
 

JAVA: 
 

An Open Approach with No 
Objects 

 

Finger Lakes Community College 

 

 
 

Will McLaughlin 
Aaron Sullivan 
Dave Ghidiu 

 

 
Version 1.1 

January, 2018  

 



 
This is the first full edition of the Introduction to Java textbook for Finger Lakes Community College. As 
such, there may be typos, grammatical mistakes, formatting issues, and erroneous content. If you find 
any of these mistakes, please email them to  dave.ghidiu@flcc.edu  - you may get your name credited in 
the official version that follows this first edition! And it’s good karma. So be diligent in reporting your 
errors. 
 

 
 
The Computing Sciences department at FLCC is a collaborative team. The primary authors for this book 
are Will McLaughlin, Aaron Sullivan, and Dave Ghidiu. But this text is a byproduct of excellence in 
pedagogy as demonstrated by all members in the department. 
 

 
 
This book is also licensed under the  Creative Commons - Attribution 4.0  International (CC-BY-4.0).  

 
 
This is a human-readable summary of (and not a substitute for) the  license .  Disclaimer . 

You are free to: 

● Share — copy and redistribute the material in any medium or format 
● Adapt — remix, transform, and build upon the material for any purpose, even commercially. 
● The licensor cannot revoke these freedoms as long as you follow the license terms. 

Under the following terms: 

● Attribution — You must give  appropriate credit , provide a link to the license, and  indicate if 
changes were made . You may do so in any reasonable manner, but not in any way that suggests 
the licensor endorses you or your use. 

● No additional restrictions — You may not apply legal terms or  technological measures  that 
legally restrict others from doing anything the license permits. 

 
 
Errata Help 

● The following people have contributed in editing: Shannon Norton, Travis Summerville, and many 
students in CSC-115 at Finger Lakes Community College. 

 
Content Help 

● Malcolm Kotok and Sophie De Arment played a big role in reviewing the flow of the book. A big 
thanks to John Ghidiu for lending his stellar programming knowledge. 

 
Production Help 

● A huge thank you to the FLCC staff who helped this project - namely Katie Nottke whose help and 
patience in producing this OER was instrumental, and Rachel Fairman whose expertise and 
speed led to a successful experience! 

 
 
 
JAVA: An Open Approach to No Objects Page 1 

mailto:dave.ghidiu@flcc.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/#
https://creativecommons.org/licenses/by/4.0/#
https://creativecommons.org/licenses/by/4.0/#
https://creativecommons.org/licenses/by/4.0/#
https://creativecommons.org/licenses/by/4.0/#


 
 
 
 
 

We dedicate our efforts to April, whose leadership and expertise has had profound 
impact on our students at FLCC. And she never says “No” when we have a bad idea. 

 
 

  

 
 
 
JAVA: An Open Approach to No Objects Page 2 



TABLE OF CONTENTS 

 

INTRODUCTION 1 3 

§1.1 Programming 14 
Computer Programs 14 

What kinds of tasks can a computer perform? 14 
Machine Code 15 

The Transistor 16 
Breaking It Down 17 

Assembly Language 18 
High-Level Languages 19 

Interpreting and Compiling Just-in-time 22 
GUI Complications 23 

Check Yourself 23 

§1.2 IDE: Integrated Development Environment 25 
Before the IDE 25 
The Modern IDE 26 

Common Features 28 
Taking Advantage 29 
File Management 29 

Check Yourself 31 

§1.3 A Program: Structured Code 32 
Hello, World! 32 

Comments 32 
Tokens and Statements 33 
Methods 33 
Classes 34 
Packages 34 

Program Structure 35 
Programmer Jargon 36 
Check Yourself 37 

§1.4 Coding Conventions 38 
Coding Standards 38 

 
 
 
JAVA: An Open Approach to No Objects Page 3 



Keep Each Line Short 39 
Only Break Up a Line If Necessary 40 
Use Blank Lines to Divide Logically 40 
Indent Code that is “Inside” 41 

Check Yourself 41 

§1.5 Experiment and Iterate 42 
Iterate 42 

If At First You Don’t Succeed... 42 
Experiment 42 

Undo (ctrl-z or cmd-z) 43 
Learn by Doing 44 
Check Yourself 45 

BASIC JAVA 46 

§2.1 Comments 47 
Types of Comments 47 

The Single Line Comment // 47 
The Block Comment /* */ 48 
The JavaDoc Comment /** */ 48 

Reasons to Comment 49 
Check Yourself 52 

§2.2 Basic Use of Variables 55 
Declaring a variable for use 55 

Camel-case and Snake_case 56 
Check Yourself 57 

§2.3 Basic Output 58 
println 58 
print 59 
Escape sequences 60 
The  String  Class - Output with Escape Sequences 61 
The  String  Class - Output with Expressions 61 
Check Yourself 63 

§2.4 Errors 65 
Types of Errors 65 

Syntax Error 65 
Runtime Error 66 
Logic Error 68 

 
 
 
JAVA: An Open Approach to No Objects Page 4 



Famous Errors 70 
Missing Semicolon [SYNTAX] 70 
Improper Capitalization [SYNTAX] 71 
Division by Zero [RUNTIME] 71 
Unnecessary Semicolon [LOGIC] 72 
Zero Index [LOGIC] 73 
Order of Operations [LOGIC] 73 
Assignment Versus Comparison [LOGIC] 74 
“ < ” instead of “ <= ” [LOGIC or RUNTIME] - 75 
Code outside of brackets [LOGIC or SYNTAX] 76 

Check Yourself 77 

VARIABLES AND MATH 78 

§3.1 Primitive Data Types 79 
Primitive Data Types 79 

int 80 
short 80 
byte 80 
long 81 
double 81 
float 81 
char 81 
boolean 82 

Strongly typed languages? 82 
Check Yourself 83 

§3.2 Declaring and Assigning Variables 84 
Declaring Variables 84 
Naming Variables 85 

Self commenting … the way to program! 87 
Assigning Variables 87 
Variables in Memory 89 

Changing the value of a variable 91 
What are State Diagrams? 92 

Check Yourself 92 

§3.3 Primitive Data Types and Objects 94 
Objects 94 
The  String   Class 94 
Check Yourself 95 

 
 
 
JAVA: An Open Approach to No Objects Page 5 



§3.4 Constants 96 
Constants 96 

§3.5 Casting 97 
What is Casting? 97 

How to Cast 97 
Casting to Format 98 

Check Yourself 99 

§3.6 Order of Operations 100 
Order of Operations 100 

Precedence 100 

§3.7 The  String  Class - an Object with methods 101 
Check Yourself 102 

§3.8 Important Classes 104 
Math  Class 104 

Math.pow(double, double) 104 
Math.random() 104 

§3.9 Basic Input 106 
Getting Basic Input from the User 106 

Code for Input 106 
Walkthrough 106 

INTRODUCTION TO SELECTIONS 108 

§4.1 Boolean Logic 108 
Relational Operators and if Statements 109 

Equals 109 
Not Equal 110 
Greater Than 110 
Greater Than or Equal To 111 
Less Than 111 
Less Than or Equal To 112 

Boolean Operators 112 
NOT 112 
AND 113 
OR 114 

Check Yourself 114 

§4.2  if  Statements 115 

 
 
 
JAVA: An Open Approach to No Objects Page 6 



Conditional Statements 116 
if  Statement 116 

Common Errors 118 
Equality 118 
Assignment 118 
Semicolon 119 
Braces 119 

if-else  Statements 120 
Check Yourself 120 

COMPLEX SELECTIONS 121 

§5.1 Multiple Conditionals 123 
Multiple  if-else  Constructs 123 
Check Yourself 125 

§5.2 Compound Conditionals 127 
And 127 
Or 128 
Ands and Ors 128 
Other Operators 129 
DeMorgan’s Law 130 
Check Yourself 131 

§5.3  switch  Statements 132 
switch  Statement 132 
Falling Through 133 
Multiple Case Labels 134 
Check Yourself 134 

§5.4 Scope 134 
Defining Scope 135 
Local and Global Variables 137 
Check Yourself 138 

METHODS 138 

§6.1 Why use Methods? 140 
Methods To The Rescue 140 
Check Yourself 143 

§6.2 Method Benefits (Not Just Blocks of Code) 144 
Check Yourself 145 

 
 
 
JAVA: An Open Approach to No Objects Page 7 



§6.3 Predefined Methods: Learn from Math 146 
Using Returned Values 146 

Getting More Out Of  Math.random() 147 
More Ways to Use Methods 148 

The Power of Methods Returning Values 149 
Passing Arguments to Parameters 149 

Method Call and Method Declaration 150 
Round A Number 150 
What about  Math.round() ? 152 
Multiple Parameters 152 
Are Classes the Real Superheroes? 153 

Check Yourself 153 

§6.4 Defining Your Own Methods 155 
When to Write a Method 155 
Writing a Method Header 156 
Writing a Method Body 158 
Writing Return Statements 159 
Go Big 161 
Check Yourself 161 

LOOPS 161 

§7.1 Control Structures - Loops 163 

§7.2 The  while  statement 164 

§7.3 The LCV 166 
Examples of Infinite Loops 167 

§7.4 Common while loops 170 
Running instructions some number of times 170 
Accumulating 170 
Counting 171 

§7.5 The for Loop 172 
Example 1: Output the integers between 1 and 10 173 
Example 2: Output multiples of 5 174 
Example 3: Print a table for squares and cubes 174 

§7.6 The  do-while  loop 175 

§7.7  break  and  continue 175 

 
 
 
JAVA: An Open Approach to No Objects Page 8 



ARRAYS 177 

§8.1 What is an Array? 178 
Description of an array 179 
Diagramming an array 180 
Check Yourself 181 

§8.2 Basic Arrays 181 
Properties of arrays 182 
Declaring an array 182 
Hardcoding values in an array 183 
Check Yourself 183 

§8.3 Accessing Information in Arrays 184 
Populating an array 184 

Populating an array with values [using code] 185 
Populating an array with values [from the user] 186 

Outputting values of an array 187 
The .length Property 188 
Check Yourself 188 

§8.4 Iterating Through Arrays 190 
Examples of iterating through arrays 190 

Outputting an array 190 
Summing the array 190 
Searching an array for a specific value 192 
Finding the maximum value in an array 193 

for-each  Loops 194 
Check Yourself 195 

APPENDIX A: Relevant API 197 

APPENDIX B: Reserved Words 215 

APPENDIX C: Java Vocabulary 216 

APPENDIX D: Answers to Textbook Questions 228 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 9 



 

  

 
 
 
JAVA: An Open Approach to No Objects Page 10 



 

  

 
 
 
JAVA: An Open Approach to No Objects Page 11 



 

  

 
 
 
JAVA: An Open Approach to No Objects Page 12 



 

INTRODUCTION 

 
“If you aren't, at any given time, scandalized by code 
you wrote five or even three years ago, you're not 

learning anywhere near enough.” 
- Nick Black - 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 13 



§1.1 Programming 
Computers are ripe to take over the world and you — YOU — may help humanity get swept 
away by artificially intelligent overlords by learning to code. Or maybe, by learning how to 
program sequences of commands for computers to follow, you can BE THE HERO that stops 
the inevitable onset of malevolent robots. 

It’s likely your plans are more modest, but we really should recognize just how powerful a force 
programmable computers are when their potential is unleashed by the people who design their 
activities, computer programmers. 

Applications and programs can exploit a computing device’s ability to crunch numbers and 
follow instructions at breakneck speed, but most people who take advantage of them daily don’t 
understand how much deep thinking goes into making those programs work. 

You are about to take a step away from that group of “most people” and towards the much 
smaller group of people who build, advance, and perfect the programs that others use.  

Computer Programs 

So, what is a computer program, really? A  computer program  is a sequence of instructions 
that defines how a computer can complete a task. 

What kinds of tasks can a computer perform?  

A computer may alert you to an upcoming appointment, tell you the weather, show you 
important messages from friends or family, and entertain you with videos, games, podcasts, 
and music - the possibilities seem endless. There are many hundreds of tiny unseen tasks 
performed to make each of those happen, too! 

Are you reading this via a web browser? Anytime you click somewhere, type, roll a mouse 
wheel, or drag your finger across a touch screen, dozens of little tasks are reacting to those 
inputs. Numbers as simple as coordinates for the individual dots (pixels) that make up an 
image on a screen get changed and updated by constantly running tasks. 

All of these tasks are managed by programs that a person, a programmer, had a hand in 
writing. If you’ve used a smartphone or other multi-purpose computing device like a tablet, 
laptop, video game console, or desktop computer, you are running programs and their tasks 
all the time. You may not realize that, in addition to the programs you directly interact with, you 
likely use hundreds of other complete programs indirectly, because of the complicated 
underlying  operating system  that supports them. 

 
 
 
JAVA: An Open Approach to No Objects Page 14 



It’s not uncommon for computer programs to leverage millions of lines of code to get their jobs 
done. For an electronic device with a central processing unit (CPU), chewing through that code 
isn’t usually a problem. After all, its speed has been measured in MIPS; that’s millions of 
instructions per second! However, someone has to write those lines of code, ensure the 
programs make logical sense and, more critically, it somehow must conform to how the 
computer reads commands, not necessarily how a human communicates. 

Machine Code 

A CPU, or processor, is built to react to electrical inputs representing commands and data in the 
form of binary numbers. In case you’re not familiar, binary numbers use the base 2 number 
system and consist only of the digits one and zero — not as limiting as it might sound because 
any number can be represented this way. 

One fundamental part of learning to code is learning to become a good problem solver. So, let’s 
go on a short journey to see how modern computers and the Java programming language came 
to be through decades of solving problems. 

 
Charles Babbage by Antoine Claudet (1850) (crop) 

In 1837, mathematician Charles Babbage invented a mechanical computer called the analytical 
engine that was meant to automatically solve mathematical equations. That was decades before 
electric light bulbs were invented! He was never able to construct it in his lifetime, however. 

 
Portrait of Ada by British painter Margaret Sarah Carpenter (1836) (crop) 

 
 
 
JAVA: An Open Approach to No Objects Page 15 



His friend and coworker, Ada Lovelace, envisioned that the analytical engine could potentially 
do more than mathematical calculations. Among extensive notes she wrote about it, she 
included what might be the first algorithm for a machine to follow. She may be the very first 
computer programmer and she accomplished it without an actual working device — it was all 
theoretical. 

It would take the harnessing of electricity for the potential of computers to be fully realized. 

The Transistor 

Modern electronic computers rely on an invention called the transistor which became practical 
in 1947. For our purposes, just imagine it as a  closed  gate that stops electric current from 
running through it that can be  opened  with a separate weak electric current.  

Those two states, open or closed, can be put to use as opposing states such as on/off, 
true/false, or one/zero as needed. As transistors were refined into smaller and smaller forms, 
their compact capability spawned a surge of smaller electronic devices, such as portable 
radios and calculators. 

 
A replica of the first working transistor 

 

The success of electronic devices relying on transistors made using the invention the cheapest 
and easiest path towards the future of computers. They were used to manage the  storage  and 
processing  of binary numbers, where every digit is in the state of either a one or a zero, in 
nearly all future computing devices. 

How could simple transistors process numbers? In order to enable computers to perform 
commands such as adding and comparing numbers, engineers used logical mathematics to 
arrange transistors. You have probably studied Boolean algebra and seen truth tables with true 
or false outcomes from operators such as logical AND and logical OR. Combinations of 
transistors can create gates such as AND, OR, and XOR (eXclusive OR) and those were 
combined to create pathways that could, for instance, add numbers together.  

 
 
 
JAVA: An Open Approach to No Objects Page 16 



Breaking It Down 

An important step in problem solving is to break complex problems into smaller, more 
manageable problems when possible. When trying to make a computer that is limited to using 
combinations of opened and closed gates, it might seem complex to add numbers. Our 
common decimal number system (base 10) is what makes it harder to imagine. How does 
someone add 9 and 6 with such a limited set of tools?  

9 in binary is 1001, and 6 in binary is 110. Does that help? 

It turns out that, by using the binary number system (base 2), engineers could boil down the 
logic to individual digits with values of only a one or a zero. The problem became simpler, as 
they only needed to produce logic gates that could arrive at a few possibilities: 0 + 0 = 0, 1 + 0 
= 1, 0 + 1 = 1, and 1 + 1 = 0  with a carry . Then, the set of logic gates could receive each digit 
from right to left. The result is 1111, which, converted back to decimal, is 15.  

 

The diagram above shows a  half adder . In order to line these up and carry from one digit to 
the next, a  full adder  is made using some duplication along with a place for a carry to come  in . 

 

Users could then feed  input  in the form of coded commands and numbers. The input could be 
stored  in temporary registers and memory. The commands could decide which  process  to use, 
that is, which channels of logically arranged gates the numbers pass through. Lastly, the results 
could be  output  to the user in some way, such as lighting up bulbs representing binary digits, 
punching cards, or printing to paper. In short, a computer now had these four fundamental 
functions: input, store, process, and output. 

Though many refinements have developed over time, the foundation was laid. The previous 
paragraph is an accurate description of how modern computers function today, as well.  

Programmers could now code and execute a program! Machine code, however, even now, 

 
 
 
JAVA: An Open Approach to No Objects Page 17 



looks something like this: 

Machine code for adding 9 and 6 

Memory 
Address  

(hexidecimal) 

Opcode 
(binary number 
of command) 

Operand 
(value or 
address) 

0x10 0000 0001 0001 0100 

0x11 0000 0110 0001 0101 

0x12 0000 0010 0001 0110 

0x13 0000 1111 0000 0000 

0x14 0000 0000 0000 1001 

0x15 0000 0000 0000 0110 

0x16 0000 0000 0000 0000 

 

If that looks daunting to you, as a learner, you’ll be happy to know that you don’t need to learn 
machine code to learn Java. However, that  is  what your computing device wants passing 
through its electric veins: cold ones and zeros. It adds a 9 and 6 that are stored in memory and 
inserts the result in a third memory location. The stored 9 and 6 values are 1001 and 0110 in 
binary. Can you find them in the code above?  

Let’s see how bits of metaphorical warmth were added to code over time. 

Assembly Language 

Writing and reading binary digits is perfect for computers but miserable business for most 
people. We could just slap some human-readable shortcuts over those numbers to represent 
the operation codes. Maybe then, we could also write a translating program to convert the 
words back into the equivalent binary machine code that the computer wants. The program 
could be called an assembler and the language could be called assembly language. Someone 
beat us to it! That is exactly what the next major step was. 

Assembly code       |     comments on this side are ignored by the assembler, but can help us! 

             org  0x10   ; Or i g in of code will be at memory address 10(hexadecimal) 
       lda  A      ; L oa d  register  a  with value in memory location labeled A 

       add  B      ; Add  value in location labeled B to value in register a 

       sta  C      ; St ore resulting value from register  a  in location C 

 
 
 
JAVA: An Open Approach to No Objects Page 18 



       hlt         ; H a lt  program (end it) 

A,     dec  9      ;Label A references the memory with a  dec imal number 9 

B,     dec  6      ;Label B references the memory with a  dec imal number 6 

C,     dec  0      ;Memory at label C will hold sum (0 for now) 

       end  

 

The descriptions to the right of each line, above, are just comments that the computer ignores, 
but, if you want to dig in a bit, you could probably get a much better idea of how these 
instructions work. If you’re really ambitious, go ahead and compare this to the machine code, 
too, as they directly correlate with each other. 

This assembly language uses short words, abbreviations and decimal numbers rather than just 
binary numbers to make it easier for programmers to write and read. However, computer 
processors do  not  understand assembly language. Before it can be executed, we need to run 
this code through another program, called an assembler, to translate it into machine code. 

 

Assembly is considered a low-level programming language because it is so “close to the metal”; 
it is organized exactly how the machine organizes its operations. As a result, programmers who 
use assembly need to have a precise understanding of how a computer functions to the point of 
knowing its exact  instruction set . 

Besides the potential monotony of managing details in larger complex programs, code written in 
assembly can only work on the computer processor architecture it is targeting. When new 
advances in processors were introduced, they had different instruction sets. Programs coded in 
assembly would not work with them unless a programmer painstakingly rewrote them. 

A great deal of software was successfully created using assembly languages and it is still used, 
but, over time, a need for something more flexible emerged. 

High-Level Languages 

In 1949, when Grace Hopper began working in a team on the first commercial computer in 
America, the UNIVAC I, she saw the need for a programming language that used english words. 
She wasn’t taken seriously at the time, but, by 1952, she had created the first  compiler , a 

 
 
 
JAVA: An Open Approach to No Objects Page 19 



program to convert an easier-to-understand language into assembly and machine code. She 
soon started work on early high-level languages that led to COBOL, a language still used by 
some companies today!  

 
Commodore Grace M. Hopper, USN (covered). (1984) 

Other high-level languages like C, and eventually Java, added an extra layer of 
human-readability that brought relief to coders using assembly. Consider the following code that 
is functionally equivalent to the assembly and machine code listed above: 

int   a   =   9 ; 

int  b  =   6 ; 

int  c = 0 ; 

c   =   a   +   b ; 

 

It’s short and sweet compared to the others, right? Maybe even partly comprehensible for 
beginning programmers. Here is the same code with some  comments  added to help explain it. 

//High-level language like C or Java 

int   a   =   9 ;   //Name an  int eger memory location “ a ”, give it the value  9 

int  b  =   6 ; 

int  c = 0 ; 

c   =   a   +   b ;  //assign to  c  the result of adding value in  a  to value in  b 

 

Compare this code example to the assembly and the machine code earlier in this chapter. 
Which would you rather write? Which would you rather read? There is an extra step needed 
when using a high-level language like C, because it is no longer so closely related to the 
hardware architecture. Single line commands in high-level languages are often equivalent to 
many lines of assembly or machine code. A program, called a compiler, is given high-level code 

 
 
 
JAVA: An Open Approach to No Objects Page 20 



and a target machine so it can create assembly code or machine code for it. 

 

Even though a compiler does complicated work, it is trivial for the programmer to use it. In fact, it 
can be used over and over in an iterative process to write code, compile it, and test it in a cycle 
until a program is finished to satisfaction. 

 

Because a compiler can target different computer architectures, it became possible to write 
portable code  using high-level languages. In other words, if a new processor architecture came 
along, a compiler could be made for it. This way, programmers wouldn’t have to rewrite their 
code. Instead, they could compile the  original source code  to a machine code that matches the 
new architecture. 

 

What if the need to compile for each new target computer architecture could be taken away as 

 
 
 
JAVA: An Open Approach to No Objects Page 21 



well? 

In 1991, James Gosling led a team of developers at Sun Microsystems to begin creating a 
language for the digital consumer devices market — a market that wasn’t ready for it. By 1995, 
however, this new programming language, Java, found a place to thrive in the quickly growing 
Internet and World Wide Web. Since then, Java has expanded in popularity as a 
general-purpose language, but a key factor in its success was an important difference in its 
compiling process and distribution. 

Instead of making programmers compile their programs for each target platform, the developers 
wanted a Java programmer to “write once, run anywhere”. That is, compile it only once and 
allow end users to run it on all types of computers. The idea was to compile towards a  virtual 
machine. The  byte code  created could be  interpreted  by a  Java virtual machine (JVM) 
installed on an end user’s computer.  

 

Interpreting and Compiling Just-in-time 

Interpreting is different from compiling in that it converts a small section of code into machine 
code, then immediately executes the code on the processor before converting the next 
section. It’s similar to the difference between someone sitting down to write a translation from 
one language to another (compiling), and someone interpreting what someone is saying for a 
live audience (interpreting). With Java, code is both compiled into bytecode, and, can then be 
interpreted at runtime. 

The problem is that interpreting is slow. Imagine subtitles that were already translated below a 
video of someone speaking as compared to waiting for a live interpreter to listen, translate, 
and then communicate it before the original speaker can continue.  

To speed up execution of programs, Java also has a Just-In-Time (JIT) compiler that runs 

 
 
 
JAVA: An Open Approach to No Objects Page 22 



along with the JVM to compile sections of a program to native machine code ahead of time, 
just-in-time. Those sections can then be executed more quickly while the JVM runs them. 

The good news for Java programmers is that they rarely need to be concerned with the 
intricacies of how this process works. 

 

A potential issue for distribution is that an up-to-date JVM must be maintained for any person’s 
type of computer in order for it to run a Java program. A benefit is that code written today could 
run on any new type of computer that pops up in the future with no burden on the programmer 
as long as someone writes a JVM for that computer. 

GUI Complications 

The advent of operating systems with graphical user interfaces (GUI) posed another 
challenge for portable code. This is because the GUI, along with other unique features, is 
completely different between operating systems. Windows, MacOS, iOS, Android, and the 
various flavors of Linux all have different techniques to generate the GUI for their programs. 
Java attempts to help with this by providing GUI code for programmers to use that can run in 
a similar way on any  platform  that has a JVM. 

 

When it comes to understanding computers and programming, this was a quick dive into the 
deep end of the pool. You touched the bottom of the pool, the bare metal of computers, the 
low-level language it understands. It’s cold down there, but getting this far means you are back 
to the surface, your head is out in the warm air. Take a deep breath. Next, we intend to swim on 
the surface using the high-level language of Java — with floaties if you need them. 

 

Check Yourself 

 

 

1. An algorithm is a set of rules to be followed in order to calculate or solve a problem. 
Answer whether the following statement is  true or false :  

A computer program could be described as an algorithm built specifically for a 
computer to use. 

 
 
 
JAVA: An Open Approach to No Objects Page 23 



2. Why don’t most modern programmers create programs using machine code? In other 
words, what are the downsides of writing machine code? 
 
 

3. How does Java’s middle step of using  javac  to compile to bytecode change the way 
programmers distribute their programs compared to previous high-level languages? 

 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 24 



§1.2 IDE: Integrated Development Environment 
A combination of a compiler and a text editor and other supporting tools make up an  integrated 
development environment (IDE) . Modern programmers benefit from decades of helpful 
improvements their workflow. Today, as you rest your fingers on a keyboard to type code, 
chances are that you will have a program giving active feedback when you begin typing. That’s 
right, a program working with you to help you write a program! 

Before the IDE 

Early computers relied on mechanical interfaces for entering programs. Imagine that someone 
flips physical metal switches to turn LED lights on and off to represent binary data and a 
memory location. Then, that person flips another physical switch to set that one code entry 
into memory: machine code entered by manually flipped switches. Faster and reusable 
methods such as punch cards were developed but were still labor intensive. 

 

User interface for the first personal computer, the Altair 8800 

 

The primary method for computer programming is with a keyboard for typing code and a screen 
for viewing code. Before point-and-click and touch interfaces were commonly used, text-only 
command line interfaces were still a huge step above mechanical input. Using simple text 
editors and separate compilers, programmers had all the fundamentals to support coding with 
even high-level languages. Using a command line interface is still preferred by some computer 
users, today. 

You can experience this using a modern computer by running the Command Prompt program in 
Microsoft Windows or opening Terminal in MacOS, or a Linux-based operating system. 

After you install the Java Development Kit (JDK) on a computer, you can invoke the  javac 
program to compile a text file with Java code in it. You can then run the bytecode file that is 
made in the process by using the program named  java  to run it with the JRE. 

 
 
 
JAVA: An Open Approach to No Objects Page 25 



 

Command Prompt  

It’s possible to code using basic GUI text editors like Notepad or Notepad++ on Windows in 
combination with the standard java command line programs javac and java. 

 

Command Prompt and Notepad (Can you follow how an error was fixed?) 

The Modern IDE 

With a modern IDE like Eclipse, Netbeans, or JGrasp, most programming tasks can be 
completed from within that one program. This integration streamlines programming, giving 
immediate feedback about errors as you type, or even suggesting shortcuts to help type parts of 
code for you! 

 
 
 
JAVA: An Open Approach to No Objects Page 26 



 

Eclipse IDE underlining a syntax error with a red, jagged line 

 

 

The JGrasp IDE explaining an error in the Compile Messages pane 

Online services can provide IDEs that are Web accessible using a web browser such as 
Google’s Chrome. Mimir offers just such an IDE, called MimirIDE, to complement its other 

 
 
 
JAVA: An Open Approach to No Objects Page 27 



educational tools. At the Mimir web site, a learner can read an assignment, code a solution, fix 
errors, submit the solution, and even receive feedback. 

 

The Mimir IDE running in a web browser 

Common Features 

As mentioned above, modern IDEs attempt to help the programmer type code. They do this by 
constantly studying your code and generating an internal model. From that model it can: 

● colorize parts of your code to differentiate them.  
● add  linting  to your code, which means to mark sections that don’t follow the syntax rules 

of the language or to warn about potential issues.  
● automatically divide your code into sections that you can hide and show, a feature called 

code collapsing .  

Have you ever noticed how typing in search terms in some web pages or applications shows a 
list of possible choices to finish the phrase? In a similar way, some IDEs make smart 
suggestions about what you might want to type next. Variations of this capability have feature 
names such as  code completion ,  code assist , or  autocomplete . 

 

 
 
 
JAVA: An Open Approach to No Objects Page 28 



Taking Advantage 

 

Did you ever see an expert use a tool in ways you never imagined? As you begin to invest time 
in coding, you’ll want to be an expert at using your primary tool, an IDE. Learn how to activate 
its features in order to type code faster and, better yet, accelerate the understanding, editing, 
and fixing of code.  

Different IDEs have different methods but you’ll find similarities between them. Colorizing is 
automatic, but most IDEs offer options to change what colors are used. For code completion, 
you may tap the down arrow key to select the code you want from a list and press enter or tab to 
have it typed for you. Code collapsing can often be activated with a small plus or triangle icon 
next to a section of code. 

Keystroke shortcuts , also called  hot keys  or  keyboard shortcuts , can help you access 
hundreds of commands in an IDE by simply pressing a combination of keys on your keyboard. 
For instance, holding the control key (ctrl) or command key and tapping the forward slash key (/) 
can turn a line of code into a comment for the compiler to ignore. You may see this listed as 
ctrl-/.  

File Management 

 

How does your workspace look? Code is stored in text files that a programmer writes, and 
complex programs require many files organized in a nested hierarchy of folders. Fortunately, 
most IDEs assist with organizing files. 

For instance, you will soon see how programs are structured into packages which require 

 
 
 
JAVA: An Open Approach to No Objects Page 29 



storing files in folders with the package name. Without an IDE you may find yourself manually 
creating folders and moving files into them, but an IDE can do all of that for you. 

Depending on the IDE, you may establish a folder where all of your projects are collected, a 
workspace . After that, creating a new project automatically creates new folders and files so that 
you stay organized. Most IDEs also include a file or project explorer section in the interface so 
that you can easily see changes that are taking place without concern for the rest of your 
computer’s file system. 

Even though an IDE helps, you will often need to know where on disk your workspace is stored 
and need to use your operating system’s file management tools. After all, you may want to 
create a backup of your work to an external storage location like a flash drive, or to a folder with 
synced cloud storage. Depending on the IDE you use, you may need to copy the entire 
workspace folder. Copying only a single code file to a new location may separate it from other 
files it depends on and cause it to fail. So, be sure to take the time necessary to understand how 
your files are organized by your IDE. 

TIP: If you use a basic text editor and command line compiler, rather than an IDE, you may 
make a change and forget to save the file before compiling. You may conclude that a fix didn’t 
work when, in reality, the compiler is still working with the unchanged version! Be sure to save 
your files after you edit your code. 

 

Larger programming projects require teams of people to work on code together and manage 
revisions and changes on a daily basis. There are tools called  version control systems  which 
allow a programmer to download a project from a shared online location, make improvements, 
test them locally, and then push the changes back to others working on the project. Popular 
version control systems include Git, Mercurial and Subversion. Some IDEs can integrate with 
these tools so that a programmer can contribute to distributed projects without using other 
applications. 

An IDE offers many aids to you, as a programmer, if you learn to use it. The core work of 
computer programming happens in your mind, though, and you must learn a programming 
language like Java to express that work. If IDEs can be the floaties in our swimming metaphor, 
our next step is to start swimming. 

 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 30 



Check Yourself 

 

1. You need an integrated development environment (IDE) to write, compile, and debug 
code. True or False? 
 
 
 

2. Name at least three helpful features of a typical IDE. 
 
 
 

3. When copying a program to continue work at a different location, say when working on it 
at home after starting work in a lab, why is copying just a .java file sometimes a 
problem? 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 31 



§1.3 A Program: Structured Code 

Hello, World! 

It’s time to work on your first Java program, and, following tradition, you can start with a hello 
world program. The only requirement for this program is to display “Hello, World!” on the screen.  

Create a file named First.java and type in the code below. It’s important to give the file that exact 
name with the capital F, even. Be very careful to make an exact copy when you type the code — 
and you should  type   it , don’t copy and paste! You only become familiar with a new skill by 
practicing, so my advice is to type it in line by line, and start training yourself. 

public   class   First  { 
   public   static   void  main ( String []  args )  { 
     // display some output  
     System . out . print ( "Hello, World!" ); 
  } 
} 

 
When you compile and run this Java program it displays: 

 
Hello, World! 

 

Be sure to try it yourself. You may find that it won’t run or that portions of your code have colorful 
jagged underlines. If so, compare the code above to yours. Did you capitalize the same letters? 
Did you use the right surrounding symbols? There are square brackets, parentheses, and curly 
brackets (braces), and they are easy to misread or mistype. Keep at it until you see the output 
showing “Hello, World!”. If you get stuck, get help. 

Now that it works, take a minute to analyze the code. (Go ahead, I’ll wait.)  

If you haven’t used other programming languages before, there’s a good chance it doesn’t make 
much sense to you. All of the code is important, but only a small section is directly concerned 
with displaying “Hello, World!”. What does it all mean? 

Comments 

There is a nice plain-language explanation in the middle: 

// display some output  
 

 
 
 
JAVA: An Open Approach to No Objects Page 32 



That explanation is a  comment.  When you compile and run the program, a comment 
does...  nothing.  When the compiler reaches  //  it ignores everything after it up to the end 
of the line. Why include it, then? A comment is written to help a person understand other 
nearby code. That person could be another programmer studying your code, or it could 
be  future you ! Either person will appreciate the help. Go ahead and ask future you, later. 
There’s more about comments in the next chapter, too. 

Tokens and Statements 

The next line performs the action we intended: 

  System . out . print ( "Hello, World!" ); 

That is a  statement , which is a command that a programmer creates to help accomplish 
a task. You can think of that entire statement’s purpose as “display a message on the 
screen”. This type of statement is called a  print statement  or an  output statement . You 
can learn about other types of statements like input statements and assignment 
statements in later chapters. 

A statement is made of smaller parts, called  tokens . 

 
Think of tokens as the smallest unit in programming. They are broken into five types: 
keywords, identifiers, operators, separators, and literals.  

Some example tokens:  

● The semicolon ( ; ) at the end is a separator token that signifies the end of the 
statement.  
 

● "Hello, World!"  is a literal token, called a  string literal . Strings are covered 
in more detail, later.  
 

● An  identifier  token,  print , is the name of the method we want to call into 
action.  

 

Methods 

It turns out that there’s a whole series of unseen statements needed to get that message 
to appear on the screen. Again,  print  is the identifier for a particular method. A  method 
is a named sequence of statements. Curiously, you don’t need to know what the 
sequence of statements is, or how they work, you only need to call it into action (invoke 

 
 
 
JAVA: An Open Approach to No Objects Page 33 



it), and it does the work for you. The program does this by temporarily jumping to the 
statements in the print method which are defined somewhere else. 

The example also has the code to define a method, complete with its sequence of 
statements: 

public   static   void  main ( String []  args ) { 
    ... 
} 
 

The name of the method is  main,  and its header is defined very specifically so that, 
when the program runs, it is recognized as the first method to invoke. Any statements 
after the first curly bracket (brace) are executed one after the other in the body of the 
method. The program will stop running when it reaches the end of the main method. The 
end of the method definition is marked by a closing brace, the second to the last brace in 
the larger code example, to be exact. 

Classes 

Many methods can be defined, and they are always defined inside of a  class . Even 
though classes are capable of much more, for now, you can think of a class as a 
collection of methods. 

public   class   First { 
    ... 
} 

 

Notice how, like methods, the class definition has a header that includes an identifier, 
First , and also opening and closing braces (  {  and  }  ) to surround what is inside the 
class, the body. One notable difference is that the identifier for a class is capitalized, but 
the identifier for a method is not (compare  First  to  print ). 

Classes must be defined in files with the exact same name as the class. That’s why this 
example program had to be typed into a file named  First.java . (The  .java  part is 
called a filename extension and helps programs understand what type of information is 
in it.) 

Packages 

In a large project, you may decide to name your classes with the same identifier as 
classes written by another programmer. This could cause a conflict! For instance, the 
other programmer’s code could also have class named  First . How would you or the 
compiler tell which  First  class is which? They can be grouped into a different  package . 

 
 
 
JAVA: An Open Approach to No Objects Page 34 



We could add a line like this to the top of the project example: 

package  edu . flcc . example; 
 
Now, you can use the  fully qualified name  of your class when you need to differentiate: 

edu.flcc.example.First 
 
Depending on the tools you are using, you or an instructor may find it unnecessarily 
complicated to organize your many small learning projects using packages. This is partly 
because the file hierarchy must often be parallel to the package name. For instance, the 
First.java  file may have to be located in an  example  folder, which is inside an  flcc 
folder, which is inside an  edu  folder. 
 
Either way, you  will  eventually want to take advantage of the many predefined classes in 
the  Java Class Library . Yes, predefined means someone else did the work for you! 
They are organized in packages, so you can  import  them into your code using their fully 
qualified name in a statement like this: 
 

import  java . util . Scanner; 
 
The current steward of the Java language, Oracle, has extensive documentation for 
when you need further details, including this tutorial about packages: 
https://docs.oracle.com/javase/tutorial/java/package/index.html  
 
For a program that performs a very limited action, that was an extensive analysis. All this 
just to display a single short message to the screen! The complexity is needed because 
the same structure and rules of the language must scale from something as simple as 
“Hello, World!” up to programs like LibreOffice or Minecraft that have thousands of lines 
of code. 

Program Structure 

The previous section discussed the different sections of the “Hello World” example program, 
and it outlines almost the entire structure of any Java program: 

 
 
 
JAVA: An Open Approach to No Objects Page 35 

https://docs.oracle.com/javase/tutorial/java/package/index.html


 

Packages are collections of classes. 
Classes contains method definitions. 

Methods contain statements. 
Statements are made of tokens and sometimes contain expressions. 

Expressions are also made of tokens.  
Tokens are the smallest elements of a program. 

Programmer Jargon 

It can be a challenge to remember all the jargon associated with any field that is new to you, but 
it will benefit you greatly. As you might expect, learning the specific terms that programmers 
commonly use empowers you to learn at a faster rate. In addition, it enables your participation in 
the worldwide community of programmers that discuss their knowledge online.  

In other words, it’s better to align your vocabulary with how everyone else talks about 
programming, so you can help them, and they can help you!  

Below is a list of some terms that may be new to you in the context of computer programming. 
Do you know what they mean? 

package token IDE code 

class high-level assembler comment 

method low-level compiler platform 

statement program interpreter language 

 
 
 
JAVA: An Open Approach to No Objects Page 36 



 

Check Yourself 

 

 

1. Why is it counterproductive for someone learning to code to only copy and paste 
examples to test them. In other words, why should a learner hand-type code examples? 
 
 

2. What is the name for messages typed into code that the compiler ignores, yet are helpful 
to programmers reading the code? 
 
 

3. What is the name for the smallest unit of programming that the compiler processes? 
 
 

4. What characters (symbols) do you type to create “braces”? What are they for? 
 
 

5. Name all methods shown in the example code from this section. 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 37 



§1.4 Coding Conventions 
It turns out that, even with all the specific syntax a programmer needs to learn for any given 
language, a tremendous amount of flexibility remains. This means your code can have a style 
and flair of its own!  

Imagine a pile of papers with different solutions to the same problem in code. Instructors can 
often tell who wrote many of them just by comparing them. This is possible not only because 
there are many ways to logically find solutions to problems but also because of that flexibility in 
how code is written. 

Look at this code, though:  

                                         package 
edu . flcc                               .example 
        ;                                   public  
    class 
    First                                       { 
   public   static                              void 
    main 
( String [            ]  
                                           args 
      ){    System . out . print        ( "Hello, World!" 
     ) 
      ;                                         }} 

 
Even early in your learning, that should look terrifying. You might be surprised that, to the 
compiler, the above code is functionally identical to the earlier “Hello World” example code. It will 
compile and run without issues! The Java language specification allows for formatting like this, 
but coding conventions keep us from writing code that is so hard to read. 

Code that is hard to read but works may  seem  satisfactory, but it will let key people down. For 
instance, other programmers that must maintain and improve your code will have a harder time 
doing so. This is especially true as you work on large projects with many contributors. Another 
key person it may bother is future you. As you continue learning, you’ll want to return to code 
you’ve written to remind yourself how you solved problems and to build on your own knowledge. 
Make your code as clear and readable as possible, and future you might even thank you. 

Coding Standards 

The organization where you are learning, or where you work, may have very specifically 
outlined conventions, called  coding standards . Coding standards have more weight behind 
them because you’ll be held directly accountable more immediately than when you are 

 
 
 
JAVA: An Open Approach to No Objects Page 38 



learning on your own or coding only for yourself.  

This might seem harsh, but most organizations of programmers have already learned the 
hard lessons of maintaining confusing or poorly written code — time and/or money has been 
wasted — and standards have already proven themselves. 

Hopefully, you’ve already decided that following coding conventions is inherently beneficial to 
yourself and others. That way, when coding in a larger organization, it will be natural to adjust 
to what will help the group.  

 

Because you are just getting started, it wouldn’t be helpful to outline every single coding 
convention. However, a list of some general coding conventions to deal with formatting and 
laying out your code is a good place to start.  

 
Keep Each Line Short 

Standards between organizations vary, but each line of code should stay below 80 to 120 
columns of  characters —  characters are symbols, like numbers and letters. Consider how the 
example below won’t fit on this page. Even when using computers to view code, it’s 
time-intensive to scroll horizontally back and forth or zoom, rather than fit code in the immediate 
view of the reader. 
 

System . out . print ( "Hello, World! I'm happy to be here for as long as  

 

You can break up long statements by carefully choosing where to use line breaks — press enter 
or return — and indenting the line in a clear way. The following example demonstrates how the 
long statement now fits on two lines and can still fit within an 80-column restriction. 

System . out . print ( "Hello, World! I'm happy to be here for as long as "  

+ "this program runs, so forgive my rambling. See, the longer "  

+ "this string is, the l-" ); 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 39 



 
Only Break Up a Line If Necessary 

It’s possible to be too excited about keeping your lines short. Avoid trying so hard that you make 
it less readable as a result. Forcing the user to scroll a page of code vertically is also 
time-consuming. 

//Poorly formatted code 

System . out . print 

( "Hello," 

+"again!" ); 

 

//Same result, but faster and easier to read 

System . out . print ( "Hello, again!" ); 

Use Blank Lines to Divide Logically 

Like writing paragraphs to help a reader know when the writer is transitioning to new thoughts, 
programmers should divide up sequences of code that are logically related. When there is no 
other division being used, such as braces, just add a blank line. 

The code below is all print statements, but notice that the blank line marks a transition between 
welcoming the user and asking for input.  

System . out . println ( "Hello, World!" ); 
System . out . println ( "It's good to be back." ); 

 
System . out . print ( "Could you please tell me your social security number?" ); 

 

Comments added above sections of related code can also help make the code more readable. 
When learning, extensive commenting can help you review what you’ve done before, but 
among some experts, commenting everything gives way to writing code that is so clear, it may 
not need a comment to be understood!  

For now, however, adding comments like below will also help you decide where to divide up 
your code with blank lines.  

//Output a welcome message to help the user feel comfortable 

System . out . println ( "Hello, World!" ); 
System . out . println ( "It's good to be back." ); 
 
//Prompt the user to input sensitive information  

System . out . print ( "Could you please tell me your social security number?" ); 

 
 
 
JAVA: An Open Approach to No Objects Page 40 



Indent Code that is “Inside” 

When code is inside another code structure, indent it. For instance, from the hello world 
example, the idea that the print statement is inside the method, and the method is inside the 
class, is made clearer by the indentations.  

//Poorly formatted code 

public   class   First  { 

public   static   void  main ( String []  args )  { 

//display some output 

System . out . print ( "Hello, World!" ); 

} 

} 

 

//formatted for clarity according to coding conventions 

public   class   First  { 

   public   static   void  main ( String []  args )  { 

     //display some output 

       System . out . print ( "Hello, World!" ); 

  } 

} 
 
In later chapters, some coding conventions may be highlighted directly, while others will be 
implied, when new concepts are introduced. Either way, be sure to pay attention to coding 
conventions, so you can help make a complex field more clear to programmers around you. 

Check Yourself 

 

 

1. Because of the syntax rules of a language, all solutions to the same problem look and 
function the same way, true or false? 
 

2. Coding conventions say that you should include as many comments as possible, true or 
false? 
 

3. Why is code indented?  

 
 
 
JAVA: An Open Approach to No Objects Page 41 



§1.5 Experiment and Iterate  

Iterate 

As you work with code, either to program a solution, fix problems, or learn by experimenting, 
you can use a repeating process like this flowchart shows: 

 

Programmers often call working through a process like this iterating. To  iterate  just means to 
perform a task repeatedly. In the chart above, a sequence of “write and edit code”, “compile”, 
and “test” is one  iteration . There is a decision at the end that checks if all requirements have 
been met. If it’s true that they have been met, then you’re done. If it’s false, something isn’t right, 
and it’s time to iterate! 

If At First You Don’t Succeed... 

Be prepared to do many, many iterations of this kind of process as you learn to program. It’s 
only natural to make many attempts while learning something so complex, but it’s also part of 
the job! Professionals use this repetitive process constantly.  

You may find that failing to find a solution and getting stuck can be very emotionally 
frustrating, at first. Programmers learn to take it in stride, eventually, though. Many have found 
that experience can help someone overcome that frustration. Like them, you can learn to 
anticipate the sweet gratification that comes from creating great code — code that works! 

 

Experiment 

Now, it’s time to experiment just a bit with the hello world example program. It shouldn’t be too 
hard to add an additional output statement. Let’s go to a phrase that predates the traditional 
“Hello,  World!”. Let’s pretend the computer is excited by your newfound programming skills and 
make it exclaim, “MY HUMAN UNDERSTANDS ME”. 

I’m going to show the code to you below, but I encourage you to try changing and testing your 

 
 
 
JAVA: An Open Approach to No Objects Page 42 



code without it. Turn to your screen, and try a few things before looking ahead for the solution. 
Go ahead and hide this page, now. I’ll wait. 

Undo (ctrl-z or cmd-z) 

Are you hesitant to try without a reference? There is always undo — have I mentioned undo? 
The beauty of experimenting on computers is that most programs let you undo what you’ve 
done by holding ctrl and tapping z (ctrl-z or cmd-z). Many people know about it, but don’t 
always take advantage. You’ll learn better if you confidently experiment. Try it. If it doesn’t 
work, undo, and try again.f 

 

Maybe you had an unexpected result from a solution like this: 

public   class   First  { 

   public   static   void  main ( String []  args )  { 

     //display some output 

       System . out . print ( "Hello, World!" ); 

       System . out . print ( "MY HUMAN UNDERSTANDS ME" ); 

  } 

} 

 

 

OUTPUT: 

 
Hello, World!MY HUMAN UNDERSTANDS ME 

 

That looks jammed up. I don’t want the second sentence pressed up against the first. Time to 
experiment. Try adding the space character inside the quotes next to the exclamation point (!) or 
the “M” in my. It’s an easy symbol to forget about because, well, it’s invisible. If you are still 
having trouble, my recommendation is to move the insertion point to the right side of the 
exclamation point and hit that spacebar with purpose. Run it again. 
 

OUTPUT: 

 
Hello, World! MY HUMAN UNDERSTANDS ME 

 

This is better, but I’d prefer it on two separate lines. I’m betting you expected that, anyway. I 

 
 
 
JAVA: An Open Approach to No Objects Page 43 



mean, you wrote the two print statements on separate lines, right? The issue is that the method, 
print() , outputs every character exactly as you specify between those quotation marks and 
nothing more. You need that invisible newline character that is inserted when someone presses 
the enter or return key. 

There is more than one way to add the newline, but there is a method like  print()  that does it 
for you. It uses an abbreviation for “line” at the end of “print” to form the identifier, “println”. Most 
read it as, “print line” and it means to print and then add a newline character at the end so 
further printing will happen below it. 

Try to test out the new method quick before looking below! 

public   class   First  { 

   public   static   void  main ( String []  args )  { 

     //display some output 

     System . out . println ( "Hello, World!" ); 

     System . out . println ( "MY HUMAN UNDERSTANDS ME" ); 

  } 

} 

 

OUTPUT: 

 
Hello, World! 
MY HUMAN UNDERSTANDS ME 

 

That’s what I’m talking about! So, println() added a newline after the exclamation for you.  

Maybe you noticed that the example uses println() for the second print statement, as well. I did 
this because some IDEs will add messages to the end of your output, and using a println() on 
your last print statement keeps them from getting mashed together. 

Learn by Doing 

I hope you followed along and tested the code above. Just reading about something or even 
watching someone do something doesn’t help as much as doing it yourself. Trust me, I’ve 
watched people do parkour and freerunning for years, and I still trip on the front step at home.  

Many new concepts in this book will be introduced with code examples that are experimented 
with and iterated on. The hope is that you’ll participate, and it will begin to feel natural for you. 
And remember, even professionals fail often with code before they get a breakthrough. 

 
 
 
JAVA: An Open Approach to No Objects Page 44 



Check Yourself 

 

 

1. What is an iteration? 
 
 

2. What is the functional difference between  print()  and  println() ? 
 
 

3. What are the three steps a programmer iterates through when coding? 
 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 45 



BASIC JAVA 
 

 

“Simple things should be simple, complex things 
should be possible.” 

- Alan Kay - 

  

 
 
 
JAVA: An Open Approach to No Objects Page 46 



Now that you’ve studied a very basic Java program, let's get started on the key building blocks 
of Java. The goal of this chapter is to give you the basic understanding of the programming 
process and to keep your development and code organized. While this chapter scratches the 
surface of many Java and software development concepts, it establishes a foundation to 
prepare you for a deeper dive in later chapters. 

Coding is just a small part of the process. Unfortunately, many focus on just the typing of code 
and inadvertently make programming more difficult. Elegant software solutions are produced 
when you do more planning and testing before you even begin to code - just like writing a paper, 
landscaping, or building anything physical. 

§2.1 Comments 
Comments are used by programmers in almost every programming language.  Comments  are 
not processed by the compiler, so code that is “commented out” is a good place to put things 
that you don’t want the computer to run. This could include comments that help people who 
read the code understand what the code is supposed to do. Sometimes, it is handy to comment 
out code that works perfectly fine, but just gets in the way when we are testing other parts of the 
code. Or sometimes, we comment out code that is “in progress” and isn’t fully developed yet. 

Most IDEs will change the color of text that is commented out. The color of comments is not 
really important, although typically the color an IDE reserves for comments will not be used 
anywhere else.  

Types of Comments 

There are three basic ways to comment: 

The Single Line Comment // 

We use the double slash when we want to comment out only one line (or part of a line). As 
soon as the computer encounters a double slash, it does not read anything else on that 
line. 

System . out . println ( "This code runs." ); 

// System.out.println("This is a test."); 

System . out . println ( "This code executes, too." ); 

The code above displays: 

OUTPUT: 

 
This code runs. 
This code executes, too. 

 
 
 
JAVA: An Open Approach to No Objects Page 47 



 

Occasionally, we will see code with comments at the end of the line. In the case below, the 
developer has added a comment that describes what the line of code does (spoiler alert, 
the code will output  3.141592653589793 ). 

System . out . println ( Math . PI );   // This will display Pi 

Using the two slashes as comments on the same line - but after the code - is a great way 
to leave remarks and comments about what that line of code is expected to do.  

System . out . println ( 3   +   6 );   // 9 

We’ll also see it in textbooks and online as a place where the author of the code will 
“comment out” what the answer to a problem is. 

The Block Comment /* */  

When blocking out many lines of code at one time, it’s probably easier to use the block 
comment, also called the multi-line comment. Think of it as a sandwich - the first part,  /* , 
is the top piece of bread, and the second part,  */ , is the bottom of the sandwich. Anything 
in between is commented out. Stylistically, people like to add an  *  to each line in the 
comments, but that’s not necessary. 

/* Written by Ferris Bueller 
 * 
 * This program will compute the interest on a bank loan 
 * when given the loan amount, interest rate, and time 
 * 
 */ 

 

This code is equivalent to the following code - they both do the same thing - that is, 
comment out whatever is in between the slices of “codeBread.” 

/* Written by Ferris Bueller 
  
 This program will compute the interest on a bank loan 
 when given the loan amount, interest rate, and time 
 
 */ 
 

Oftentimes, when you are working on code and want to comment out a big chunk of it, it’s 
pretty quick if you jam a  /*  before the code you want to comment and a  */  after the code 
you want to comment. 

The JavaDoc Comment /** */ 

Also known as “Documentation Comments”, here is a third way to comment. If we were to 

 
 
 
JAVA: An Open Approach to No Objects Page 48 



make a super sweet program (or class) that required a “user manual”, then we should get 
used to the JavaDoc comments, also known as Documentation Comments. When used 
properly, the user manual will be generated for you automatically. If you are sitting there 
wondering what a JavaDoc looks like, check out the  JavaDoc for the  String  class .  

You will revisit Documentation Comments when you start developing your own methods 
with parameters and return types - we don’t use them much in this class 

Reasons to Comment 

Many programmers use comments at the top of their programs to put their name and a brief 
description of what the program does. 

// Created by Bart Simpson 
// This program will output some letters on the screen 
 
public   class   HelloWorld   { 
   public   static   void  main  ( String  args [])   { 
     System . out . println ( "Hello World!" ); 
   } 
} 

Occasionally, when a programmer thinks a section of code is fairly confusing to someone who 
might be reading it, they will put comments before the code so that the reader can understand it. 
There are times where the author will be confused by their own code, and the comments will 
help them out when they have to update their code. 

System . out . print ( "Enter a number: " ); 
int  num  =  scanner . nextInt (); 
 
// Check to see if the number is odd by 
// seeing if there is a remainder when  
// divided by 2 
if   ( num  %   2   ==   1 )   { 
   System . out . println ( num  +   " is odd." ); 
}   else   { 
   System . out . println ( num  +   " is even." ); 
} 

It’s pretty common for programmers to put a “to do” list in a program (or method) so that they 
can come back later and add more features. Later on, when reading about methods and 
program stubs, this may make more sense. 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 49 

https://docs.oracle.com/javase/7/docs/api/index.html?java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/index.html?java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/index.html?java/lang/String.html


private   boolean  computePrimeness ()   { 
// TODO: Design a sweet, sweet algorithm 
   System . out . println ( "computePrimeness has run" ); 
   return   false ; 
} 

When debugging, comments are extremely helpful. Suppose we have twenty lines of code, and 
there is an error somewhere in those lines. We could “comment out” nineteen of the lines and 
run the program. If it runs successfully, we can uncomment another line (but keep the other 
eighteen lines commented out). Run it. If no error occurs, uncomment another line. By reducing 
the amount of code that runs, it is easier to find the error.  

Let’s imagine that I want to write a program to create ten random numbers between 1 and 100. 
In the code below, there is a logic error. Furthermore, let’s imagine I have no idea where that 
error is. Don’t worry if this code is over your head - you don’t have to know what it does. All you 
need to understand is the process of adding in comments to help target the location of the 
buggy code. 

import  java . util . ArrayList ; 

public   class   RandomNumbers  { 
  public   static   void  main ( String   [] args ){  
  
     ArrayList < Integer >  list  =   new   ArrayList < Integer >(); 
 
     for   ( int  i  =   0 ;  i  <   10 ;  i ++)   { 
      list . add ( new   Integer (( int ) Math . random ()* 100 )); 
     } 
     System . out . println ( list ); 
   } 
} 

 

OUTPUT: 

 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

 

Well that’s weird… What are the chances that all ten random numbers are zero? It’s 
much more likely I screwed up somewhere. Maybe I declared the  ArrayList 
improperly? Maybe I’m not using  Math.random()  right? I’m not sure. So I’m going to 
comment almost everything out and see if it runs. If it does, I’ll try adding some of the 
commented lines back into the program… 

 
 
 
JAVA: An Open Approach to No Objects Page 50 



import  java . util . ArrayList ; 
 
public   class   RandomNumbers  { 
   public   static   void  main ( String []  args ){  
     ArrayList < Integer >  list  =   new   ArrayList < Integer >(); 
  

// for (int i = 0; i < 10; i++) { 
// list.add(new Integer((int)Math.random()*100)); 
// } 

 
     System . out . println ( list ); 
   } 
} 

 
OUTPUT: 

 
[] 

 

Huh. So I notice that when I run it this time, there is no error. I wasn’t expecting random 
numbers to be generated because I commented out the code to do that. So I think it’s 
safe to say that since nothing else broke, the code that is commented out has the error 
in it. So maybe now I’ll try uncommenting some of the lines of code that were omitted 
from execution in the last run: 

import  java . util . ArrayList ; 
 
public   class   RandomNumbers  { 
   public   static   void  main ( String []  args ){  
     ArrayList < Integer >  list  =   new   ArrayList < Integer >(); 
  
     // for (int i = 0; i < 10; i++) { 
    list . add ( new   Integer (( int ) Math . random ()* 100 )); 
     // } 

 
     System . out . println ( list ); 
   } 
} 

OUTPUT: 
 
[0] 

 

 
 
 
JAVA: An Open Approach to No Objects Page 51 



 

Hmmm…. I’m not sure if that zero was really a zero that was randomly generated, or if 
it’s the bug. Lemme try running it again. 

OUTPUT: 

 
[0] 

 

And one more time, just for good measure. 

OUTPUT: 

 
[0] 

 

I’m calling it! It looks like the error has come back, and it’s in the line of code where I 
generate a random number. I guess I’ll really look into that one line of code and dissect 
it. See if I can’t find the error. 

list . add ( new   Integer (( int ) Math . random ()* 100 )); 
 

The error, by the way, is that  Math.random()  generates a number between  0.0  and 
0.99999999999 , so I should have multiplied it by 100 before I turn it into an integer. 
Easy mistake, I do it all the time. You will too! 

Check Yourself 

 
 

1. Name the three types of comments used in java and how you create each type of  
 
 

2. What should be included in the heading comment of any program? 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 52 



3. Which statement(s) are valid use of line comments: 

a.   //variable to hold a person's lucky number 
  int  num  =   0; 

b. String  quote  =   "   ";   //hold a student's favorite quote 

c. //hold a person's age: int age = 0; 

d. //this variable is a long named variable 

// and will be used to hold a student's 

// favorite number when they were younger 

int  thisVariableHoldsANumberFromEarlierTimes  =   0; 

 

 

 

4. Compare the following heading comments, which are all basically the same. Create a 
three column table and highlight the strengths and weaknesses of each. Label the first 
column “Letter”, the second column “Strengths”, and the third column “Weaknesses”). 

a. //Name: Gordon Freeman 

//Date: 11/8/98 

//Purpose: This program defends the human race against hostile Aliens. 

b. /* Name: Gordon Freeman 

 Date: 11/8/98 

 Purpose: This program defends the human race against hostile Aliens. 

*/ 

c. /* Name: Gordon Freeman 

 * Date: 11/8/98 

 * Purpose: This program defends the human race against hostile Aliens. 

 */ 

d. /**********************************************************************  

 * Name: Gordon Freeman   

 * Date: 11/8/98  

 * Purpose: This program defends the human race against hostile Aliens.  

 ********************************************************************/ 

 

 

 

 

 

 
 
 
JAVA: An Open Approach to No Objects Page 53 



e. /**  

 * This program defends the human race against hostile Aliens. 

 *  

 * @author Gordon Freeman  

 * @version 1.0 

 * @since 1998-11-08  

 *  

 */ 

f. /* 

 Gordon Freeman 

 11/8/98  

 This program defends the human race against hostile Aliens.  

 */ 

 

5. Rewrite the following program using only line comments. (You only need to modify the 
comments, you do not need to understand or modify the program itself.) 

/* 
 * Author: Will McLaughlin 
 * Date: 6.29.17 
 *  
 * This program will print the alphabet to the standard console output. 
 */ 

 
public   class   AlphabetPrinter  { 
/*This is a java application, so has a main method.*/ 
  public   static   void  main ( String []  args )  { 
    int  anUnusedVariable  =   0 ;   /* an unused variable */ 
     /*variable to hold the initial letter to be printed to the console 
      * and is initialized to the letter a, the first character to print 
     */ 
     char  letter  =   'a';  
     /*loop through all the letters of the alphabet and display to  
     *console 
     */ 
 
     for ( char  ch  =  letter ;  ch  <=   'z' ;   ++ ch ){ 
       System . out . print ( ch ); 
    } 
  } 
} 

 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 54 



§2.2 Basic Use of Variables 
 

Programs need data to work with, and they need to hold onto the data to use later. The data is 
held, or stored, in memory. The software needs to know where it put the data in memory, so it 
needs to label the memory location to be able to recover the data later. This is analogous to how 
a family may store their holiday decorations. You only need them at certain times, so you store 
them in totes, boxes with labels on them. Variables are the totes with labels. Data is stored in 
totes (memory), and is labelled (variable names) for access later on.  

 

www.pinterest.com/pin/130322982942249481 

 

Variables will be discussed much heavier next chapter, but for now here are some simple 
concepts.  

Declaring a variable for use 

Before you can declare a variable to hold data, you first need to know two things. (analogous to 
totes in a closet) 

1. Data type (analogous to size of the tote to be used for storage) 
2. Variable name (analogous to the label for the tote) 

Data type  is the type of data that the variable will be storing. The three main data types in Java 
are int, double, and String. These are whole numbers, real numbers, and strings (text). Note, in 

 
 
 
JAVA: An Open Approach to No Objects Page 55 

http://www.pinterest.com/pin/130322982942249481


any Java program, String data is surrounded by double quotes.  "Hello World"   and  "Thomas" 
are Strings, however  Hello World   and  Thomas   are not, as they are not between double 
quotes.  

The variable name is the name you want to use for that memory location. For now, you should 
name your variables lowercase letters with no spaces. (You will study all the rules and naming 
conventions in the near future, as well as many other data types.) 

To declare a variable in java, state the data type and then the name of the variable followed by a 
semicolon. For example: 

//Declaring 3 variables, notice the only uppercase letter is the 'S'  
//in "String" 
int  age ;   //declare a variable named age to hold an integer 
double  height ;   //declare a variable named height to hold a decimal 
String  name ;   //declare a variable to have a string 

The above block of code now gives the program space to store data. To put values into the 
variables, we use the = assignment operator : 

age  =   17 ;   //assign the age variable to the value of 17 
name  =   "Thomas" ;   // assign name to Thomas 
height  =   70.23 ;   //set height 

Now the data is stored in memory and could be depicted as in the diagram 2.2a, located in the 
previous pages. You can now get their values later on in the program to use, or even change. 
For example, to calculate the age after a year, you get the current value and add one: 

age  +   1   /*expression to add 1 to the current age*/ 

To update the variable in memory, simply re-assign the variable: 

age  =  age  +   1 ;   //statement to add one to age, and update the variable 

Couple of concepts to point out from this example. On the right side of the assignment operator, 
you have an expression. The expression is evaluated before the assignment happens. To 
evaluate it, it needs the age, so will look it up in memory and use the current value of 17 in the 
expression. The value of 1 is then added to get 18. Lastly, the assignment operator replaces the 
value in the age variable with 18. 

 

Camel-case and Snake_case 

You have heard of uppercase and lowercase, but what is camel-case? Camel case is a style 
to write multiple words together, with no spaces, making it easier to read by capitalizing the 
first letter of each word.  
 
ForExampleThisOneWordSentenceIsWrittenInCamelCase (camelCase) 
 

 
 
 
JAVA: An Open Approach to No Objects Page 56 



Some_people_would_say_that_underscores_would_work_better. (snake_case) 
 
Different software languages have different coding conventions, and some lend itself better to 
snake_case, while others to camelCase. Java uses the camelCase naming convention for 
variables. 

 

Check Yourself 

 
 

1. Many first year Java programmers mostly use what three main data types? 
 
 

2. What kind of data type should you use for each of the following? 

a. Age of a student 
b. Name of a pet 
c. Total amount on lunch bill 
d. Number of student in a college 
e. Average number of siblings for college students 

 
 

 
3. Declare a variable to store the number of classes a student is taking. 

 
 

4. Declare variables to store data for each of the following: 

a. Age of a student 
b. Name of a pet 
c. Total amount on lunch bill 
d. Number of student in a college 
e. Average number of siblings for college students 

 
 
 

5. What is Pascal case and how does it compare to camel case? 

 

 
 
 
JAVA: An Open Approach to No Objects Page 57 



§2.3 Basic Output 
A great program has an intuitive and smooth user interface. User interface design is entire 
branch of software development that will not be covered here. However, we want our programs 
to let the user know what is going on. The easiest way is to print a message and the value of 
variables.  

println 

You have used the  println  method,  System . out . println (), already in your HelloWorld.java 
application. 

System . out . println ( "Hello World!" ); 

This will take the argument,  "Hello World!" , and print it to the console (output), on its own 
line. The  println()  method takes only one argument, everything between the parenthesis 
(....). The argument is typically a  String , number, or a variable. It will print whatever is in the 
argument on one line, then move onto the next line for the next output to be made. It is like 
hitting the Enter key on the keyboard. For example, all the following are valid output calls and 
would print out three lines of output: 

System . out . println (   "The quick brown fox jumps over the lazy dog."   ); 

System . out . println (   1234   ); 

System . out . println (  name  );   //assume the name variable has a value 

OUTPUT: 

 
The quick brown fox jumps over the lazy dog. 
1234 
Julio 

 

The argument can be almost anything, even an entire expression! Also valid method calls: 

System . out . println (   2   *   12   -   4   +   5   ); 

//25 (order of operations work here) 

 

System . out . println (  total  +  total  *   0.08   ); 

//display total with 8% tax added to it 

 

System . out . println (   "Greetings "   +  name  +   ", "   ); 

//example that add Strings together (known as "concatenation")  

 
 
 
JAVA: An Open Approach to No Objects Page 58 



OUTPUT: 

 
25 
101.52 
Greetings Julio,  

 

You will study expressions more in the future, but for now, know that you can do mathematical 
expressions or add  String  data types together. String concatenation is the operation of joining 
characters together end-to-end. (i.e. adding words together.) For example: 

"Ground"   +   "hog"  becomes  "Groundhog" 
"Name: "   +   "Tim" becomes  "Name: Tim"   (notice the space after the colon) 
"Name"  +   ":"   +   " "   +   "Tim"  becomes  "Name: Tim" 

Adding  String  data types with numbers gets a little confusing and will be discussed later in the 
text.  

print 

There are times you will want to print, but not move onto the next line of output. For example the 
output from the following code would not be very good: 
 

String  user  =   "Bill Gates"; 

//print greeting to user 

System . out . println ( "Hello"   ); 

System . out . println ( user ); 

System . out . println ( "!" );  

OUTPUT: 

 
Hello 
Bill Gates 
! 

 

The output would look much better if the data was printed on a single line. A solution is to print 
the data within the argument, but do not skip on the next line. The method  print  does just that. 
The following would be much better. 

String  user  =   "Bill Gates" ; 

 

//print greeting to user 

 
 
 
JAVA: An Open Approach to No Objects Page 59 



System . out . print ( "Hello "   ); 

System . out . print ( user ); 

System . out . print ( "!" );  

OUTPUT: 

 
Hello Bill Gates! 

 

Escape sequences 

So  print   and  println   output to the standard console the value of the parameter, whether it is 
a  String , variable or an expression. Many times the parameter is a Java  String  literal, made 
by using double quotes.  So whatever you type between the double quotes become a  String 
literal such as  "Hello World!" .  However, there are some characters that you type that will 
cause problems, or not be able to be registered as characters within a  String  literal.  For 
example, what if you want to output the greeting, but have the word  World   quoted?  You would 
try: 

System . out . println ( "Hello "World"!" );  //ERROR … 

Exception in thread "main" java.lang.Error: Unresolved compilation 
problems: 

The left-hand side of an assignment must be a variable 
Syntax error on token "World", invalid AssignmentOperator 

The problem is the double quote before the  W  in  World  ends the  String  literal  Hello , the 
compiler does not know what to do with this. There are a handful of these special characters 
that are difficult for the compiler to handle well. The solution is to use a special character to flag 
the compiler that the next character is special. The character chosen to flag the compiler is the 
backslash( \ ). This escape charter is used within the  String  literal (between the  " " ). The 
sequence of characters is known as an escape sequence. So to solve the issue, we would use 
\"  to represent the double quote character: 

System . out . println ( "Hello \"World\"!" );  //notice the spacing 

The backslash character tells the compiler that the next character is to be translated as a 
special character. Do not forget that the escape sequence is text, so needs to be used within a 
String  using double quotes. Common escape sequences: 

\"  Insert a double quote in the text at this point. 
\t  Insert a tab in the text at this point. 
\n  Insert a newline in the text at this point. 
\'  Insert a single quote character in the text at this point. 
\\  Insert a backslash character in the text at this point. 

 
 
 
JAVA: An Open Approach to No Objects Page 60 



The  String  Class - Output with Escape Sequences  

You have done same simple basic Java programs with outputting data, or at least read about 
them. This following application, a Java class with a  main  method, using the  print  and 
println  methods to display various lines of output using escape sequences. 

/* Aaron Sullivan Experiment  
 * with escape sequences!! 
 * 9/21/2017 
 */ 

public   class   Escape   { 
   public   static   void  main ( String []  args )   { 
     System . out . print ( "Hi.\n" ); 
     System . out . print ( "Aga\nin.\n" ); 
     System . out . println ( "Hello,\nagain." ); 
     System . out . println ( "Aaron says, \"Code well!\"" ); 
     System . out . println ( "Look! \\ A backslash!" ); 
     System . out . println ( "\tThis is indented" ); 
   } 
} 

OUTPUT: 

 
Hi. 
Aga 
in. 
Hello, 
again. 
Aaron says, "Code well!" 
Look! \ A backslash! 

This is indented 

 

The  String  Class - Output with Expressions 

You should understand that a Java  String  is any text found between a set of double quotes. 
String s are data that are manipulated by programs. When used in a Java program, these are 
known as  String  literals. Literally, they are a  String , explicitly written in the program. The 
print  and  println  methods take the data and display it in the console output. There are times, 
as shown earlier, that you can print expressions that involve both  String  data and numbers. 
Let’s look at different output examples using  String , numbers, and expressions using addition.  

 

 
 
 
JAVA: An Open Approach to No Objects Page 61 



Expressions follow order of operations. The following blocks of code uses only addition, so all 
computation are computed left to right, unless there are a set of parenthesis. The expression 
within the parenthesis are calculated before adding.  When adding  String  data together, it puts 
them end-to-end. When adding numbers together, it evaluates as you would expect.  

1  System . out . println ( "3 + 4" );  //String literal output:3 + 4 
2  System . out . println ( "3 "  +  "+"   +  " 4" );   //String concatenation output:3 + 4 
3  System . out . println ( 3   +   4 );   //output:7 

 

Line 1 is a simple printing of a  String  literal with no expression to calculate 

Line 2 is an expression with just  String  data.  String s are added together end-to-end. This is 
called  String  concatenation. It computes the expression and then outputs the single ( String ) 
value 

Line 3 is an expression with just numbers, so it computes it before output the value. 

 

When adding  String  and numbers together, it get complicated. Expressions with both numbers 
and  String s still follow the Java order of operations. When adding left to right, the evaluation 
depends on the type of data being added. When two  String s are added together, they are 
concatenated . When two numbers are added together, they are  evaluated  as a number. When 
adding a number and a  String , or a  String  and a number, the number is treated as a  String 
and then concatenated. 

 

4  System . out . println ( "3 + 4 = "   +   3   +   4 );   //output: 3 + 4 = 34 
 
Line 4 is evaluated left to right. It is adding the  String   "3 + 4 = "  , with the number  3 . It 
cannot add a  String  and a number together, so the number  3  is converted to a  String  “3”. 
Then it concatenates the values to get  "3 + 4 = 3" .  The rest of the expression is then 
evaluated:  "3 + 4 = "  +   4  . The same process works here   String  + number, convert 
number 4   to a  String  “4” and concatenate to get  "3 + 4 = 34" .  

OUTPUT: 

 
3 + 4 = 34 

 

Look at the following examples and try to understand the output. These are evaluated using 
order of operation, which is mostly left-to-right. If you are adding numbers, simply add the 
values. If you are adding  Strings , concatenate. If you are adding a number with a  String , 
convert the number to a  String  and concatenate. 

System . out . println ( 3   +   4   +   " = 3 + 4" ); 
//output:7 = 3 + 4  

 
 
 
JAVA: An Open Approach to No Objects Page 62 



 
System . out . println ( 3   +   4   +   " = 3 + 4 = "   +   "3"   +   "4" ); 
//output:7 = 3 + 4 = 34  
 
System . out . println ( 3   +   4   +   " = 3 + 4 = "   +   3   +   4 ); 
//output:7 = 3 + 4 = 34  
 
System . out . println ( 3   +   4   +   " = 3 + 4 = "   +   ( 3   +   4 )); 
//output 7 = 3 + 4 = 7  

  

Check Yourself 

 
 

1. What are the issues with each of the following lines of code. 

a. System . out . prntln ( "Hello World!" ); 
b. System . out . println ( "Hello "   name  ); 
c. System . out . println ( "Hello \"World\"); 

 

2. Write the output for each of the following EXACTLY: 

a. System . out . println ( "Hello\n\t\"World\"\n!" ); 

b. System . out . print ( "The" ); 

System . out . print ( "quick "   +   "brown "   +   "fox " ); 

System . out . println ( "jumps over" ); 

System . out . print ( "the lazy\n" ); 

System . out . print ( "dog!" ); 

c. System . out . print ( "Sum of 1,3, and 5 = "  +  (1+3+5)  +  "."  ); 
 

d. String  name  =   "Ted" ; 
System . out . print ( "Who would like to see "   +  name  +   " talk?"   ); 
 
 
 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 63 



3. Rewrite the following in a single  println  method: 

a. System . out . print ( "The " ); 

System . out . print ( "quick " + "brown " + "fox " ); 

System . out . println ( "jumps over" ); 

System . out . print ( "the lazy" ); 

System . out . print ( "dog!\n" ); 

  

b. String  ai =   " J.A.R.V.I.S "; 

System . out . print ( "\"" ); 

System . out . print ( ai ); 

System . out . print ( ", sometimes you gotta run before you can " ); 

System . out . print ( "walk.\"-Tony Stark\n" ); 

 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 64 



§2.4 Errors 
If anyone tells you that all their code is bug-free, they’re lying. Coding is a fragile business, and 
we get errors all the time. All too often, the act of fixing one bug causes at least one more bug to 
surface. This means it is even more important to test your code incrementally - so that small 
bugs can be discovered and managed before the project gets very large. 

 

First  documented computer bug 
Grace Hopper - September 9th, 1947 

The story goes that Grace Hopper (remember her from the first chapter?), one of the lead 
programmers of the Mark II in the mid 1940’s, found a moth trapped in one of the relays in the 
computer. This caused a short, which in turn caused erroneous data to be reported. Hence, the 
term, “bug”.  

Types of Errors 

The good news is that there are only three types of errors that programmers can make when 
programming in Java. The bad news is that errors happen often. All. The. Time. 

Syntax Error 

A  syntax error  is essentially a typo. When using an IDE, most editors will even underline 
the error in red (much like a spell checker in word processors). Syntax errors will prevent 
the software from running. Usually, it’s an easy fix (a semicolon has been omitted), 
although every now and then the syntax errors can be harder to understand. The following 
code will cause a syntax error: 

 

 
 
 
JAVA: An Open Approach to No Objects Page 65 



The issue is that whoever wrote this code used a number “1” instead of a lowercase “L”. In 
the monospace font, it’s difficult to tell. Something like that may take a while to figure out 
because it is not really a Java mistake as much as it is a font mistake. 

int  num1  =   10; 

int  num2  =   12 

The code above demonstrates the time-honored tradition of forgetting a semicolon. The 
program won’t compile, and you’ll get a nastygram on the screen from the IDE. Everyone 
forgets semicolons - so if you haven’t yet, don’t worry. You will. 

Many IDEs will have a few hiccups when dealing with syntax errors. Because of the partial 
compilation required to make IDEs detect the syntax errors, it can be a little laggy - so if 
you fix an error and it is still underlined, you may have to save the document just to force 
the IDE to scan it again for errors. Also, IDEs sometimes reports errors on a line that is 
actually caused by a syntax error on a previous line. For example, the IDE may say that 
line 51 has an issue - let’s say a missing semicolon -, but really line 50 has the issue and 
the IDE is just confused. Usually, reading the error message by floating the cursor over the 
red squiggly underline will provide more context for the issue. 

Bottom line - a syntax error is a typo and will prevent the software from even starting. 

Runtime Error 

A  runtime error  happens when the program is running. Oftentimes, this means the 
software may run reliably for a number of trials, but will crash every once in awhile. This 
isn’t a problem with the software in the sense that the program is quitting for no reason, 
rather a runtime error is an indicator that the software isn’t handling some things properly. 
Runtime errors will stop a program dead in their tracks and you’ll get the “Red Text of 
Death”. 

The quintessential example of a runtime error occurs in a primitive calculator. Here is the 
output and input from the first attempt. Note that the bold, underlined writing is what the 
user types in. 

 

Please enter a number:  20 

Please enter another number:  4 

20 / 4 = 5 

 

In the previous example, the first number was divided by the second number without 
incident. 

 
 
 
JAVA: An Open Approach to No Objects Page 66 



 

 

Please enter a number:  18 

Please enter another number:  6 

18 / 6 = 3 

 

In the example above, the first number was divided by the second number (again), and 
there were no problems (again). 
 

 

Please enter a number:  17 

Please enter another number:  0 

Exception in thread "main"  java.lang.ArithmeticException : / by zero 

at adding.Testing.main( Testing.java:16 ) 

 

Here we have a catastrophe - we think the program is fine because it worked twice, but it 
conked out the third time around. The problem is that computers don’t much like it when 
you try to force them to divide by zero. The author of this program made the assumption 
that any two numbers can be divided. In retrospect, the author  probably  should have 
checked to see that the second number wasn’t a zero (and if it was, the program should 
then go back and ask the user to enter a number that is not zero). By the way - the red 
writing is called a “ stack trace ”. It’s a breadcrumb trail that you can use to figure out where 
the program went wrong. In this case, the stack trace is only a few lines long. In some 
cases it can be much larger. 

Another common mistake is when the program tries to store a value that the user entered 
into a variable that is incapable of storing that type of data. For instance, in this program, 
the computer asks the user for a number. In the first example, there is no issue. But the 
second time around, the user tries to enter a  String  instead of a  double . 

 

 

 

 

 

 

 

 
 
 
JAVA: An Open Approach to No Objects Page 67 



 

Enter a number:  21.3 

Enter a number:  Weird Al 

Exception in thread "main"  java.util.InputMismatchException 

at java.util.Scanner.throwFor(Unknown Source) 

at java.util.Scanner.throwFor(Unknown Source) 

at java.util.Scanner.throwFor(Unknown Source) 

at java.util.Scanner.throwFor(Unknown Source) 

At adding.Testing.main( Testing.java:14 ) 

 

Again, we can use this stack trace to find the problem. In this case, the stack trace starts 
off by saying there is an  InputMismatchException  (which shouldn’t mean anything to 
you yet), but that’s what caused the problem. The good news is that it looks like the 
problem originated from the code on line 14, so that’s a good place to start.  If you haven’t 
figured it out, an  InputMismatchException  is when the computer is expecting one type of 
input - like an  int  - but gets a different kind of input. 

Bottom line - runtime errors may not always happen, but when they do, it’s never a 
graceful crash (and it can usually be prevented by good coding and solid  error handling !). 

Logic Error 

Logic errors  are the most frustrating because we may never even know they exist. At 
least a runtime error and syntax error have the decency to make you aware of their 
presence. 

These happen because the computer does exactly what we told it to do (it’s just that we 
told it the wrong thing).  

double  num1  =   20 ; 

double  num2  =   2 ; 

System . out . println ( num1  +  num2  /   5 ); 

 

In this example, the programmer probably intended to add the two variables ( num1  and 
num2 ) and then divide by  5 . Instead, they disregarded precedence and the computer 
divided  num2  by  5  first and then added the answer to  num1 . This is an easy mistake to 
make, and if you haven’t made it yet don’t worry - your time will come. 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 68 



System . out . print ( "Enter a number: " ); 

int  number  =  scanner . nextInt (); 

 

if   ( num1  >   10 )  { 

   System . out . println ( "Your number is big." ); 

}   else   if   ( num1  <   10 )  { 

  System . out . println ( "Your number is small." ); 

} 

There is a logic error in this code, too. Do you see it?  

It’s an error by omission. The programmer accounted for the case when  num1  was greater 
than 10 and the case when  num1  was less than 10. But if  num1  equals 10, then what 
happens? What should happen? Most likely the programmer should have code in there to 
react appropriately when  num1  equals 10. Don’t get bent out of shape if you couldn’t 
decipher that code segment - we haven’t even talked about conditionals yet (but we will 
soon!). 

One of the most popular errors is the Off By One Error (OBOE). This often happens when 
“walking through arrays” (don’t worry about what that means right now). Although an array 
might not have much contextual value to you yet, it’s safe to think of arrays as a bunch of 
lockers. It’s pretty common in Java to want to open every locker in a row and peek inside. 
So if you have 10 lockers, the code might look like this: 

for   ( int  i  =   0 ;  i  <=   10 ;  i ++)  { 

System . out . println ( array [ i ]); 

} 

Recognizing that we haven’t covered the concepts of arrays and loops yet, we  might  be 
able to understand that this program won’t work because the computer is trying to look in a 
row of 11 lockers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). That’s bad news because there are only 
10 lockers. The program should use  i < 10  instead of  i <= 10 . Because computer 
scientists start counting at zero instead of one, it’s easy to make this mistake. 

A similar logical mistake is the “fencepost error”. It’s a simple counting error, but it can 
cause wacky results. The name comes from the physical act of building a fence. Imagine 
we were going to build a split-rail fence that is three sections long. How many fence posts 
do we need (a fence post is one of those big pieces of wood that is vertical, goes in the 
ground, and supports the horizontal fence pieces). 

Did you say three? 

It’s easy to say that we need three fence posts if we are building a fence with three 
sections. But we really need four fence posts! The diagram below demonstrates this. 

 
 
 
JAVA: An Open Approach to No Objects Page 69 



 

A three panel fence needs four fence posts! 

Famous Errors 

The following are some of the most popular errors that programmers experience. Most of the 
examples contain code outside the scope of this chapter. However, it would be wise to revisit 
this section as you move forward through the text. There’s a good chance that you’ll encounter 
these errors: 

Missing Semicolon [SYNTAX] 

Description: 

● This happens when you forget to punctuate a line of code with a 
semicolon. 

● This error happens often when you first start to program, and will 
sporadically haunt you until your dying day. 

Code Snippet: 

public   static   void  main  ( String  args [])   { 
   System . out . println ( "Hello World" ) 
} 

Example of Error Message: 

● error: ';' expected 

Way to fix/avoid 

● You can't. It's inevitable. You cannot escape your destiny. 
#finalDestination 

 

 

 
 
 
JAVA: An Open Approach to No Objects Page 70 



Improper Capitalization [SYNTAX] 

Description: 

● Forgetting a capital letter (for instance, the "S" in "System"). 

● Even though programmers won't get errors if they capitalize variable 
names (it's technically legal in Java, just against convention), you will get 
disapproving looks from your peers. 

Code Snippet: 

public   static   void  main  ( String  args [])   { 
  system . out . println ( "Hello World" ); 
} 

Example of Error Message: 

● error: package system does not exist 

Way to fix/avoid 

● Just be hyper-vigilant to Java rules! 

 

Division by Zero [RUNTIME] 

Description: 

● This doesn't happen too often, but when a number is divided by zero, 
you'll know (the program crashes and a stack trace is produced). 

● You may actually have this error present in your code, but you may never 
know because in your testing, you don't ever encounter a scenario where 
division by zero happens. Don't worry - the person you are writing code 
for will let you know you screwed up. 

Code snippet 

public   static   void  main  ( String  args [])   { 
   int  a  =   12 ; 
   int  b  =   0 ; 
   System . out . println ( a / b ); 
} 

 

 
 
 
JAVA: An Open Approach to No Objects Page 71 



Example of error code 

● ArithmeticException: / by zero 

Way to fix/avoid 

● You probably should just be diligent about pressing the "/" key when 
coding - make sure you consider times when the computer may 
encounter dividing by zero. 

● Note that the same error will surface when modding (" % "), too. 

● When testing code, use fringe cases (like zeros). 

 

Unnecessary Semicolon [LOGIC] 

Description: 

● You'll most likely encounter this when you first start using if statements 
and loops, but once you get used to these concepts, you probably won't 
experience it too often. 

Code snippet 

if   ( numberOfStudents  >   20 );   { 
   System . out . println ( "Need Overload Slip" ); 
} 

Example of error code 

● This is a logic error, so you won't get an error message. 

● Most likely, you'll notice that the loop doesn't function right (the code in 
the loop will always execute, and it will only execute once). 

Way to fix/avoid 

● Don't put a semicolon after a conditional statement or loop control 
statement. 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 72 



Zero Index [LOGIC] 

Description: 

● This error happens often when you first start to program and will take a 
bit to get used to. Once you get it, though, you'll probably never see it 
again. 

● This error usually happens when dealing with arrays and Strings. 

● It is often referred to as an “Off-By-One-Error” or a “Fencepost Error”, and 
means that the number of iterations a loop had was off by one - either 
one too many or one too few. 

Code snippet 

public   static   void  main  ( String  args [])   { 
   String  firstName  =   "Stringfellow" ; 
   System . out . println ( firstName . charAt ( 1 ));   // t 
} 

Example of error code 

● Because this is a logic error, you will not generate an error. 

● The output will not be what you expect - in this example, the programmer 
wanted to retrieve the first letter of the name, but they should have used 
" firstName.charAt(0); " 

Way to fix/avoid 

● Be aware that computer scientists start counting at zero! 

 

Order of Operations [LOGIC] 

Description: 

● Get used to this one… It takes a while to shake this error. 

Code snippet 

public   static   void  main  ( String  args [])   { 
   int  a  =   10 ,   b  =   20 ; 
   System . out . println ( "Sum: "   +  a  +  b );   // Sum: 1020 
} 

 
 
 
JAVA: An Open Approach to No Objects Page 73 



 

public   static   void  main  ( String  args [])   { 
   int  a  =   40 ; 
   int  b  =   50 ; 
   int  c  =   60 ; 
 
   System . out . println ( a  +  b  /  c );   // 40 
} 
 

 
 
// See error in  § 2.1 regarding RandomNumbers 

Example of error code 

● No error code will be displayed because this is a logic error.  

● You'll probably see this more when trying to output the values of variables 
in a statement that also outputs a String. 

Way to fix/avoid 

● Use parentheses when doing mathematical computations. 

● Remember that the "+" sign in a System.out.print statement will 
concatenate before it adds (order of operations). 

 

Assignment Versus Comparison [LOGIC] 

Description: 

● This error happens often when you first start to program, but fades with 
time as you get used to the environment. 

● It gets conflated with the zero-indexed logic error often, so be on the 
lookout. 

Code snippet 

public   static   void  main  ( String  args [])   { 
   int  answer  =   33 ; 
   if   ( answer  =   42 )   { 
     System . out . println ( "The answer to everything!" ); 
   } 
} 

 
 
 
JAVA: An Open Approach to No Objects Page 74 



Example of error code 

● Sometimes you'll see an error, sometimes you'll just see wonky results. 

● error: incompatible types: int cannot be converted to boolean 

Way to fix/avoid 

● Don't forget that one equal sign, " = ", means  assign  and two equal signs 
(" == ") means  compare . 

 

“<”  instead of “ <=”  [LOGIC or RUNTIME] -  

Description: 

● In the best-case scenario, this will just be a logic error and will yield odd 
results 

● In the worst-case scenario, this will stop your program dead in its tracks. 

Code snippet 

public   static   void  main  ( String  args [])   { 
   int  sizeOfCrew  =   9 ; 
   if   ( sizeOfCrew  <   9 )   { 
     System . out . println ( "Firefly!" ); 
   } 
} 
// This code should use sizeOfCrew <= 9, so unexpected 
// results will occur. 

 
 
public   static   void  main  ( String  args [])   { 
   String  name  =   "Nathan Fillion" ; 
   for   ( int  i  =   0 ;  i  <=  name . length ();  i ++)   { 
    System . out . println ( name . charAt ( i )); 

   } 
} 
 
// This will barf because the for loop should only 
// iterate i < name.length() because if i is actually 
// the length of the String, then charAt(i) will throw 
// an error (recall that the first index in a String is 0, 
// and the last is length-1). 

 
 
 
JAVA: An Open Approach to No Objects Page 75 



Example of error code 

● When this is a logic error, you’ll only get weird results. 

● IndexOutOfBoundsException 

Way to fix/avoid 

● Uh, just be careful. 

 

Code outside of brackets [LOGIC or SYNTAX] 

Description: 

● This happens if you don’t pay attention to the brackets in your code. 
● If you don’t use brackets for conditionals and loops, you will encounter 

this issue. 
● If you put relevant information outside a set of relevant brackets (instead 

of inside), you’ll get this issue (usually a logic error, but occasionally a 
syntax issue if you have scope - don’t worry about what scope is yet). 

Code snippet 

public   static   void  main  ( String  args [])   { 
   if   ( a  ==  b ) 
   System . out . println ( a  +   " Is equal to  "); 
   System . out . println ( b ); 
} 
 
// If a equals b, the first System.out.println() is called 
// but   no matter what, the second println() will always be 
// called - it   is not associated with the if statement  
// because there are no   brackets with the if statement, so  
// only the first line of code   is contingent on the  
// conditional. The code should read: 
 
public   static   void  main  ( String  args [])   { 
   if   ( a  ==  b )   { 
     System . out . println ( a  +   " Is equal to  "); 
     System . out . println ( b ); 
   } 
} 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 76 



Example of error code 

● If this is a logic error, you’ll just get odd results. 
● error: unreachable code 
● error: cannot find symbol 

Way to fix/avoid 

● You need to have a solid appreciation for programming conventions! You 
need to know when to use brackets and the implications of the 
brackets!!!! 
 

● Most IDEs have an autoformatting function - be sure to invoke this often 
to help train you! 

 

Check Yourself 

 
 

1. What are the three classifications of errors generated in Java? 
 
 

2. What kind of error is generated by each line of code: 

A. System . out . println ( "Hello World!") 

 

B. double  average  =   ( 82 + 90 + 87 )   /   4; 

 

C. int  age  =   18.5 ; 

 

D. System . out . printn ( "Hello Again!" ); 

 

E. int  area  =  length  +  width; 

 

F. System . out . println (" Sum  of  1   and   3   =   "   ( 1 + 3 )   ); 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 77 



VARIABLES AND MATH 
 
 

“Control all the variables you can. . . .  don’t worry 
about the rest” 

- Forrest Griffin -  
 

Great advice if you are a UFC fighter. 
Bad advice if you are a programmer. 

  

 
 
 
JAVA: An Open Approach to No Objects Page 78 



§3.1 Primitive Data Types 
When we code, we need places to store information (only for the duration of the program). For 
instance, if you’ve ever played the original Pokemon game on GameBoy, when you first start a 
game, you are prompted for your name: 

 

Throughout the game, you are referred to as whatever you typed your name in as. This is a 
variable . Typically, variables will have names that are self-explanatory. For instance, in the code 
for Pokemon, there is probably a variable called  name  or  firstName  that would store whatever 
the user enters. Data come in all shapes and sizes - integers, decimals, characters, Strings, and 
even funky things like arrays,  ArrayLists , and  Scanners  (stay tuned for all that good stuff). 

Programming can be thought of as nothing more than manipulating data. So to be a good 
programmer, you will want to understand how data is stored, used, and changed. The first thing 
to know about data, is how each piece of information is classified. We start with the building 
blocks of all data, the primitive data types. 

Primitive Data Types 

There are eight types of  primitive data types . A primitive data type is a fundamental building 
block in Java - anything that isn’t a primitive data type is an  object . Not all these data types will 
be used in this chapter, or even in the text. However, for completeness, all eight data types will 
are listed here.  
 

 
 
 
JAVA: An Open Approach to No Objects Page 79 



Primitive 
Data Type 

Contains Default 
value 

Size 
(Bytes) 

Size 
(Bits) 

Range 

boolean true or false false NA  1  NA 

char Unicode 
character 

\u0000  2  16 /u0000 to /uFFFF 

byte Signed integer 0 1 8 -128 to 127 

short Signed integer 0 2 16 -32,768 to 32,767 
(-2 15  to 2 15 ) 

int Signed integer 0 4 32 -2,147,483,648 to -2,147,483,647 
(-2 31  to 2 31 ) 

 
long 

 
Signed integer 

 
0 

 
8 

 
64 

-9,223,372,036,854,775,808 to 
-9,223,372,036,854,775,808 
(-2 63  to 2 63 ) 

float Floating point 0.0 4 32 + 1.4E-45 to  + 3.4028235E+38 
(around 7 significant digits) 

double Floating point 0.0 8 64 + 4.9E-324 to 
+ 1.7976931348623157E+308 
(around 16 significant digits) 

 
Table describing the 8 primitive data types in Java (the building blocks of all data used in Java programs). Note that 

you don’t have to memorize this. At all. 

int 

An  int  is capable of holding integers (whole numbers) that are both positive and negative. 
int s can store values roughly between negative 2 billion and positive 2 billion. For 
instance, the following are all valid values of  int . It is 4 bytes. 

8, -5, 132 

short 

A  short  is similar to an  int  (it can hold whole numbers - both positive and negative), but it 
has a much smaller range. This is great when memory is an issue (like military radios), but 
often necessary for most programs. A  short  is only 2 bytes, and can hold numbers 
between -32,768 and 32,767. 

8, -5, 120 

byte 

 
 
 
JAVA: An Open Approach to No Objects Page 80 



A byte is like a puny short. It is only 1 byte, so the numbers it can hold are between -128 
and 127. 

8, -5, 120 

long 

This is also like an  int , but a  long  can hold numbers  much  larger than  int . Actually, a 
long  can hold numbers between negative 9 quintillion and positive 9 quintillion (give or 
take). Again, there are times when programmers will leverage a long, but for the scope of 
this course we probably won’t need it too often. A  long  is 8 bytes (64-bits!). 

145, 394, 965, 903, 560 

double 

A  double  is what’s known as a  floating point  number. Your graphing calculators had a 
“float” mode that you may have seen. In the real world, we refer to these numbers as 
decimals . So, yeah, you’re familiar with them. A double can hold decimals - positive and 
negative. A  double  is 8 bytes, and the range is  freaking huge . Even though they take up 
more memory, we still default to  double  in this class. Don’t worry - your computer won’t 
really notice a difference. 

3.2, 5.0, -8.4 

float 

Just like a double, but a bit smaller. A variable of type float is 4 bytes, and is used for 
precision decimals. In this course, we won’t really use float all that much. 

3.2, 5.0, -8.4 

char 

Think of a  char  as just one key press. It comes from the shortening of the word  character . 
So, if you press ‘u’, that’s a  char . So is ‘ = ’. Or ‘ { ‘. Or ‘ ‘ (that’s a space!). It’s a bit more 
inclusive - there are roughly 65,000 different UNICODE symbols (because it’s 2 bytes).  

You can see a UNICODE table here:  http://unicode-table.com/en/ . This covers all the 
letters in the English language (both lowercase and uppercase, numbers, symbols, and 
characters from most other languages. With room to spare. There’s even WingDing type 
characters in UNICODE. And believe it or not, UNICODE is responsible for emojis ( check 
out this fascinating story at 99% Invisible ). It’s important to note that variables of type  char 
are represented with a single quote (use double quotes for a  String  - see below) 

'c' 'C' '4' ' ' '[' 

 
 
 
JAVA: An Open Approach to No Objects Page 81 

http://unicode-table.com/en/
http://99percentinvisible.org/episode/person-lotus-position/
http://99percentinvisible.org/episode/person-lotus-position/


boolean 

Named after George Boole (1815-1864),  boolean  refers to Boolean Algebra, which is 
mathematical logic using truth values. There are only two possible values for a boolean 
variable: 

true, false 

Hopefully you noticed that there are several different ways to store an integer value. Why 
so many? The easy answer: for efficiency. Say you wanted to upload the ages of all 
people living in the United States for statistical analysis. There are roughly 321 Million 
different ages that would needed to be manipulated (downloaded, saved, loaded, used in 
calculations, etc.). If they were stored as a  long   data type, that would be 8x321 Million 
bytes (roughly 2.5 gigabytes) of data. If you stored them as a  byte   data type, you would 
only need 321 megabytes. The program would be able to work 8 times faster (in theory) if 
the ages were stored as  byte   data types and not  long . The same argument holds for real 
numbers when comparing the  float   and  double   data types. For many of you programs, 
use  int   data type for integers, and  double  data type for real numbers. 

Strongly typed languages? 

Java, like many languages, are considered  strongly typed,  or strictly typed. Strongly 
typed languages will generate errors or be unable to compile when the types of data 
(values) do not match. The following line of code is an example of this. 

int  x  =   34.5; 

In this example, the compiler checks the data types and finds that the value your are 
trying to assign x, is not a whole number, so will generate an error and will not compile. 
The compiler will do a process to verify the data is accurately assigned and used based 
on the type of data or variable. This process is called  type checking . 

So in contrast a software that is  weakly typed , or loosely typed, does not require a 
variable to be defined with a type and will typically allow for mixing data types in an 
expression. Javascript, Python, and Perl are three examples of weakly typed languages. 

 
 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 82 



Check Yourself 

 
For the following questions, choose the data type for the suggested value that will store the right 
kind of data with the least amount of wasted memory. 

1. The number of meters from the Earth to the sun as a whole number. (over 149 billion) 
 
 

2. The first letter of your name. 
 
 

3. An internet country code top-level domain. (Examples: .kr, .uk, .ca ) 
 
 

4. The current temperature up to the tenths place. (Example: 32.5) 
 
 

5. The day of the month as a number. 
 
 

6. Keep track of whether it is a workday or not (it either is, or isn’t). 
 
 

7. The current year (and should work for at least the next 20,000 years) 
 
 

8. A floating-point number with more accuracy than  float  can provide. 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 83 



§3.2 Declaring and Assigning Variables 
As highlighted in the last section, there are different types of data, or data types, that exist. The 
number 4 is different than 4.0. Each is different than the letter ‘4’, and is much different than the 
word “four”. The type of data will dictate how much memory will be needed to hold, or store, the 
values. For example the number 4 is an integer, so will need to be an int, and will need 2 bytes 
of data. The table below illustrates the different size memory space each 4 will require because 
each are stored in a different way. (“four” is above the scope of this chapter). 

Given value Type of data Java data type Number of bytes  

4 integer int 4 (32 bits) 

4.0  real number double  8 (64 bits) 

‘4’ (\u0034)  letter char 2 (16 bits) 

 

Storing data in memory is similar to storing items in an attic. Each item will require a different 
size box. The boxes will be labeled, so items can be easily found. Likewise, in programming, 
when you store data in memory, you will give them a label. Declaring variables to store data is 
like labeling a box to store seasonal clothes. 

There is a difference between  declaring  and  assigning  variables, and that distinction is very 
important. New programmers often do not differentiate between the two, but knowing the 
difference will help avoid many common mistakes.  

Declaring Variables 

Declaring is “telling the computer that you are allocating space for a data type ( int ,  double , 
etc.), but you don’t have to give it a value yet”. 

int  age ;   // There is no assigned value in age  

All variables are declared with a declared data type and a name. The type is used to make sure 
that only the data of that type is stored in that memory location. The name of the variable is 
used to associate (label) the spot in memory where the value is. This is like the storage totes 
mentioned earlier with labels on them. Depending on the item (data type) being stored dictates 
how large the tote (memory) is.  

All data is declared with two identifiers, followed by a semicolon. 

<data type> <variable name>; 

 
 
 
JAVA: An Open Approach to No Objects Page 84 



Examples: 

char  gender ; // the variable gender will hold a character value  

// such as 'f' 

 

int  numOfSibs ; // to store the number of siblings 

 

double  gpa ; // hold the real number for a grade point average 

 

String  name ; // variable to hold the user's name 

You cannot declare multiple variables that have the same name! That’s like George Foreman 
naming all his sons “George”. It just leads to too much confusion sitting around the dinner table. 
Compilers cannot have such confusion, so they will not allow you to declare variables with the 
same name. 

It’s fair to even declare a number of variables at once (assuming they are all of the same type): 

int  age ,  weight ,  height; 

It’s even fair to even declare and assign a number of variables at once (assuming they are all of 
the same type): 

int  age ,  weight  =   150 ,  height  =   70 ; 

// note that 'age' was not assigned a value, so attempting to  

// access the state of 'age' will result in a compilation error 

 
Naming Variables 

There are several rules to naming the variables in your program: 

1. Start with a letter, dollar sign, or underscore*.  
 (54 options: a,b,c, …, z, A, B, C, …, Z,$,_) 
 

2. Variable names must contain only  
a. Letters (a,b,c, …, z, A, B, C, …, Z) 
b. Digit (0,1,2,...,9 ) 
c. Dollar sign ( $ )  
d. Underscore ( _ ) 

 
3. Variables cannot be a  reserved word  (like  int ,  double ,  for , …) 

 
4. By convention (coding standards), all variables should start with a lowercase letter.  

 
 
 
JAVA: An Open Approach to No Objects Page 85 



The following are valid variable identifiers: 

a 

age 

this_variable_name_is_a_long_one_but_is_still_valid 

thisVariableNameIsAlsoAcceptable 

num1 

num2 

These variable names are valid but are discouraged: 

FirstName 

// starts with an uppercase letter 

 

$name 

// $ The dollar sign is intended for use only in mechanically  

// generated code and is used internally by the compiler to decorate 

// certain names  

 

_LastName 

// does not start with a lowercase letter 

 

THIS_WILL_WORK 

// does not start with a lowercase letter 

The following are invalid variable names: 

double 

// invalid because double is a reserved identifier 

 

2Times 

// invalid because it starts with a number 

 

first name 

// invalid because it contains a space 
 

 
 
 
JAVA: An Open Approach to No Objects Page 86 



Self commenting … the way to program! 

What is the following block of code doing? 

int  a  =   4 ; 
int  b  =   5 ; 
int  c  =   6 ; 
int  d  =  a * b * c ; 
int  e  =   2 *( a * b  +  a * c  +  b * c ); 
System . out . println ( d ); 
System . out . println ( e ); 

It is not very clear, it is a bit of a riddle … you could add comments to help: 

int  a  =   4 ;   //length of a prism 
int  b  =   5 ;   //width of a prism 
int  c  =   6 ;   //height of a prism 
int  d  =  a * b * c ;   //calculate the volume of a prism 
int  e  =   2 *( a * b  +  a * c  +  b * c );   //calculate the surface area 
System . out . println ( d );   //display volume 
System . out . println ( e );   //display surface area 

Or even better, make your variable self commenting, meaning you can program your 
variables to comment themselves: 

int  length  =   4 ; 
int  width  =   5 ; 
int  height  =   6 ; 
int  volumeOfPrism  =  length * width * height ; 
int  surfaceArea  =   2 *( length * width  +  length * height  +  width  * height ); 
System . out . println (" Volume :   "   +  volumeOfPrism ); 
System . out . println (" Surface  area :   "   +  surfaceArea  );  

 

Assigning Variables 

Assigning a variable is “giving the variable a value”. I like to refer to it as “breathing some life 
into the variable”.  

int  age ; 

// age is declared, but not initialized (has no value assigned) … yet 

 

age  =   38 ; 

// Now age has been assigned a value - it's 38! 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 87 



You can assign a variable once it has been declared. Sometimes people even declare and 
assign them in one fell swoop, and is the preferred method for Java programmers: 

// Declare 'age' as an int and give it a value of 38 

int  age  =   38 ; 

Oftentimes, programmers will declare a number of variables at once and only assign a few of 
them: 

int  age ,  weight  =   160 ,  height; 

// 'age' has been declared, but not initialized 

// 'weight' has a value of 160 

// 'height' has been declared, but not initialized 

You can even reassign it multiple times in a program - it’s like recycling!  #CaptainPlanet 

You cannot assign a variable if it has not been declared (created). Try it. See what happens. 

int  age; 

weight  =   160 ;   // BAD THINGS WILL HAPPEN 

Keep it consistent … 

Like many other programming languages, there are options and some flexibility to 
programming styles to complete tasks in Java. Declare and initializing variables in java 
is one such example. The following blocks of code each do the same thing, declare 3 
grades and initialize them to 0. 

Option 1: 

int  grade1  =   0 ; 
int  grade2  =   0 ; 
int  grade3  =   0 ; 
 

Option 2: 

int  grade1 ,  grade2 ,  grade3 ; 
grade1  =   0 ; 
grade2  =   0 ; 
grade3  =   0 ; 
 

Option 3: 

int  grade1  =   0 ,  grade2  =   0 ,  grade3  =   0 ; 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 88 

https://twitter.com/search?q=%40captainplanet


Which one should you go with if they are all valid options? You can easily find 
examples of each option above when reading code from other sources. Finding many 
variations on code is common. So, what option is correct? There is no set solution, 
however, typically there is a preferred way … just check what coding standards you 
should be using.  

 

Variables in Memory 

Many times when testing and debugging a program, you will trace the execution. That is, you 
will be the compiler and run the program yourself on paper. You will go line by line in the 
program, keeping track of the variables and their values. To do this you will use diagrams to 
represent the state of the program, a snapshot of the current data values of the program. 

Take a look at the diagrammed memory for the following lines of code: 

int  numberOfGuests  =   4 ; 

double  price  =   7.25 ; 

double  profit; 

 
 

Trace through the following program (line numbers are shown to help with the trace and are not 
actually part of the code): 

1 public   class   MemoryDiagramEx   { 
2 
3    public   static   void  main ( String []  args )   { 
4 
5      int  x  =   4 ; 
6      int  y  =  x; 
7 
8      System . out . print ( "X = " ); 
9      System . out . println ( x ); 
10      System . out . print ( "Y = " ); 
11      System . out . println ( y ); 
12 
13     x  =   8 ; 

 
 
 
JAVA: An Open Approach to No Objects Page 89 



14      System . out . print ( "X = " ); 
15      System . out . println ( x ); 
16      System . out . print ( "Y = " ); 
17      System . out . println ( y ); 
18    } 
19 } 

 
Let’s focus on lines 5 and 6 (shown here): 

5      int  x  =   4 ; 
6      int  y  =  x; 

The variables in memory would be  4  for both variables. Line 5 should be trivial, declare a 
variable named  x  to hold an integer, and assign the value of 4 to the variable  x . Line 6 is a little 
less trivial, declare a variable named  y  to hold an integer … evaluate the value of  x  by looking 
up the value in memory, and assign that value of 4 to y .  We denote memory with a box, and the 
variables names being the label of the memory locations: 

 

So the output for the first block or  print  statements (lines 8-11) would be: 

8      System . out . print ( "X = " ); 
9      System . out . println ( x ); 
10      System . out . print ( "Y = " ); 
11      System . out . println ( y ); 
 

OUTPUT: 

 
X = 4 
Y = 4 

 

Now let’s look at lines 12 and 13: 

12 
13     x  =   8 ; 
 

This code changes the value of  x , assigns the value of  8  to variable  x . So memory would now 
look like: 

 
 
 
JAVA: An Open Approach to No Objects Page 90 



 

And the final output (lines 14-17): 

14      System . out . print ( "X = " ); 
15      System . out . println ( x ); 
16      System . out . print ( "Y = " ); 
17      System . out . println ( y ); 
 

OUTPUT (prior output is grayed out) 

 
X = 4 
Y = 4 
X = 8 
Y = 4 

Many early programmers would have both values change to  8 , because we set we set the value 
for variable  y  to the value of variable  x  with the statement  y = x;  

Early programmers link the variable  y  with  x , thinking that if you change  x ,  y  would also change. 

However, after we set the value of  y  to  4 , that statement is done, and the program continues. 
After that, the only way to change the value of  y  is to assign it using the assignment operator 
(the equal sign) again. For example, after the final output, you could change the value of  y  to  12 :  

 y  =  y * 3; 
 

Changing the value of a variable 

The only way to change the value of a variable is to use the equal operator. For example 
 

age  =  age  +   1 ;   //add a year to the age variable 
 
As a rule of thumb this is true. There are a couple of exceptions to the rule, but are simply 
variations of the equal operator or is a special kind of operator. These will be discussed in the 
near future and include the auto-increment and auto-decrement. 
 
The point is:  THE ONLY WAY TO CHANGE THE VALUE OF A VARIABLE IS THE 
ASSIGNMENT OPERATOR. 

 
 
 
JAVA: An Open Approach to No Objects Page 91 



 

What are State Diagrams?  

If someone asked you “How are you feeling?”, you would give them the state you are in. 
Depending on the state you are in, would dictate what the other person would do. If you were 
in a sad state, they may tell you a joke, or give you a gift. If you were hurt, they would likely try 
to help. Likewise, many computer scientists, game developers, robotic engineers, AI 
developers, and others in related fields will use state diagrams to help develop software to 
decide what the program should do next. 

Depending on all the data of the program/machine, the software will be in a particular state. 
The program will move to a different state when the data in the software changes enough to 
put it into a different state. An easy example would be a computer game, the game could be in 
a pause state, load state, gameplay state, ...etc. 

State Diagrams are diagrams that represent a particular state. There are many different 
variations on how to set up these diagrams and where they are used. To scratch the surface, 
take a look at any of the following: 

● https://en.wikipedia.org/wiki/State_diagram 
● https://en.wikipedia.org/wiki/Finite-state_machine 
● https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-imple

mentation--gamedev-11867  

 

Check Yourself 

 

1. Label each line either declaration statement, assignment statement, or both. 

a. int  teaCups  =   6; 

b. coasters  =   4; 

c. int  guests; 

d. guests  =   5; 

e. double  tableCost  =   14590.72; 

 
 
 
JAVA: An Open Approach to No Objects Page 92 

https://en.wikipedia.org/wiki/State_diagram
https://en.wikipedia.org/wiki/Finite-state_machine
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867


f. boolean  inviteJabba; 

 

 

2. What are the values of the three variables after the code below is executed? 
 

char  first  =   ' a ',  second ; 

second  =  first ; 

first  =   ' y '; 

char   last   =  first; 

 

 

3. Explain why each chosen variable identifier below is not valid or against convention. 

1number 

char 

WholeNumber 

small change 

smile^_^ 
 

 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 93 



§3.3 Primitive Data Types and Objects 

Objects 

We’ve already talked about primitive data types quite a bit. But there is another type of data, too. 
It’s called an  object . We don’t dive too deep into objects in this course, but you should be aware 
of their existence. Think of objects as different programs that have some attributes and some 
abilities. Now, this is a really misleading oversimplification, but it’ll do for now. 

Primitive data types are easier to deal with than objects (or classes). Here’s an example of how 
you could create a variable called  age  that holds an integer: 

int  age; 

And here’s how you would create a variable called  listOfStudents  that is an  ArrayList  (an 
ArrayList  is a class, and creating a variable in your program that is a class is a bit more work 
and they are a story for a different day). 

ArrayList  listOfStudentNames < String >   =   new   ArrayList < String >(); 

You might be thinking to yourself, “Self, that is sooooo much more work! I’m glad we only are 
learning about primitive data types for right now. So much less typing!” 

The  String  Class 

But wait! There is a class we will be using! It’s called a  String , and it’s really just a bunch of 
characters glued together. And since we use  String s so much in Java, there is a shortcut to 
creating one - you don’t need to go through the hoops that you would for most other classes; 
you can just declare it like a primitive data type (although there are some under-the-hood things 
going on that you’ll have to be careful of - we’ll look at them later): 

String  name  =   "Walter White"; 

So it’s totally legit to declare and assign a  String  as if it were a primitive data type, but if you 
really wanted to, you could follow the convention for declaring and assigning an object (this is 
actually called  instantiating  when dealing with objects, but that’s also for another day):  

String  name  =   new   String ( "Walter White" ); 

Note that a  String  is denoted by using a  double  quote (whereas a  char  uses single quotes). 

 

 
 
 
JAVA: An Open Approach to No Objects Page 94 



Check Yourself 

 

1. What is wrong with the following code? 
 

char  name  =   " Colonel   Mustard "; 

 

 

 

 
2. What is wrong with the following code? 

 

String  name  =   ' Professor   Plum '; 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 95 



§3.4 Constants 

Constants 

A  constant   is like a variable in that a name and type are identified, but unlike a variable, the 
value is hard-coded into the software. The constant (variable) is assigned and can never be 
changed. The naming convention is that all the letters are capitalized and words are glued 
together with an underscore. Additionally, the keyword  final  is used, which signifies a 
constant. Example: 

final   double  PI  =   3.14 ; 

System . out . println ( "Circumference = "   +   ( PI * 10 )); 

Any attempt for a program to modify a constant will result in explosions (i.e. errors): 

final   int  NUMBER_OF_FINGERS  =   5 ; 

NUMBER_OF_FINGERS  =   10 ; // explosion… i.e. 

Exception … java.lang.Error: Unresolved compilation problem: 

 The final local variable NUMBER_OF_FINGERS cannot be assigned. 

There are a few good reasons to use constants. Imagine we are writing an application that 
references a website where help guides and tutorials are present. Furthermore, let’s imagine 
that this help center website is referenced from several different locations in the code. If we 
manually typed the URL in every section of the code, we open ourselves up to errors (what if we 
type it right eight out of nine times? Then there is the possibility someone clicks on the URL and 
it doesn’t function properly). Another good reason that using a constant is because (and this 
URL example is perfect), we only have to change the value of it once. So if we have a variable 
named “ HELP_PAGE_URL ” and set it equal to “ http://www.stackoverflow.org ”, we could 
easily update the URL by changing just that one line of code - everywhere that references 
“ HELP_PAGE_URL ” can stay the same! 

public   class   HelpMethods   { 

   public   static   final   String  HELP_PAGE_URL  =   " http://www.stackoverflow.com "; 

 

   public   static   void  main  ( String  args [])   { 

     System . out . println (" For help, go to:  "   +  HELP_PAGE_URL ); 

   } 

} 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 96 

http://www.helpfulurl.com/


§3.5 Casting 

What is Casting? 
Casting  is necessary in strongly typed languages (like Java) because sometimes you just really 
want to treat a variable of one type as another type. One of the biggest reasons to do this is 
because of the funky results you get from integer division. 
 

int  num1  =   15; 

int  num2  =   6; 

System . out . println ( num1 / num2 ); 

 
You would expect the result to be  2.5  (because that’s what 15 divided by 6 is!), but because 
both 15 and 6 are integers, the result is provided as an integer. So the computer will  truncate 
the answer (that means it chops off the decimal and anything after the decimal). So the answer 
is really  2 . That’s crazy, right? 
 

How to Cast 
There are a few different ways to cast. Let’s look at the example of the two numbers 
above. The right way to do this would be to cast one (or both!) of the variables to be a 
double. To cast a variable to another type, you just need to parenthetically precede the 
variable with the type you want it to be. Note that this is a “one and done” thing - casting 
does not change the type of the variable permanently - it just bends that variable to your 
will for an instant. 
 
Before considering this example, you need to know that in  mixed-mode arithmetic,  all 
variables involved are  automatically promoted  to the least restrictive type. So if we cast 
one of the  int  variables to a  double , both of them will be considered a  double  and the 
answer will also be a  double . 
 

int  num1  =   15; 

int  num2  =    6; 

System . out . println (( double ) num1 / num2 ); 
 
The result here would be  2.5  because a  double  is involved in the computation. It’s 
pretty neat that we didn’t need to cast  num2  to also be a  double . Of course, we  could 
have cast both  num1  and  num2  to be  double , but we don’t need to.  
 
So the right way to cast a variable is to use the parentheses before a variable that you 
want to treat as a different type. But it’s quicker to do it the wrong way! Since it is true 
that introducing a  double  to an integer calculation will make the answer a  double , why 
not just introduce a  double  literal into the equation? Since any number times 1 results in 

 
 
 
JAVA: An Open Approach to No Objects Page 97 



that number, this is valid: 
 

int  num1  =   15; 

int  num2  =    6; 

System . out . println ( 1.0 * num1 / num2 ); 

 
Sure, it’s not the “right” way to cast, but it works! One common mistake is to cast 
improperly. There is a logic error in this code: 
 

int  num1  =   15; 

int  num2  =    6; 

System . out . println ( 1.0 *( num1 / num2 )); 
 
This is because - thanks to the order of operations -  num1  is divided by  num2  (as 
integers, which results in  2 ) and  then  the answer is cast as a  double , so the 
programmer should have cast  num1  as a  double  instead. 
 
In this example, recall that a variable of type  char  can have a value of any character in 
the UNICODE standard (like a "9", " ", or "ö"). But it’s possible to cast a  char  to an  int 
to see the numerical equivalent. 
 

char  character  =   'g'; 

System . out . println ( character ); 

System . out . println (( int ) character ); 

 
The result of this program is: 
 

g 

103 

 
This gets a little confusing because new programmers may try something like 
 

System.out.println('g' + 'g'); 
 
hoping to get  gg  but instead they would get  206  (because the int equivalent of the char 
‘g’ is 103, and we got two of them!). 
 
Casting has a much bigger reach when we start talking about objects and classes, but 
that won’t happen for a while. 

 
Casting to Format 
There is a way to format numbers in Java, but you can accomplish the same thing 
without the  NumberFormat  class (although  stackoverflow has a nice thread  on this). 

 
 
 
JAVA: An Open Approach to No Objects Page 98 

http://stackoverflow.com/questions/12806278/double-decimal-formatting-in-java


 
Let’s imagine we want to format a number to look like dollars and cents. Without the 
decimal formatter, we can come pretty close. This is true for all instances when you want 
to round or truncate to a certain decimal place.  
 
Let’s say we have a variable of type  double  called  amount , and we want to show the 
first two decimal places (although it has may have several figures past the decimal 
point). Let’s say the value of  amount  is  4.5678 . 

 
amount  =  amount  *   100 ;   // 456.78 

amount  =   ( int )  amount ;   // 456 

amount  =  amount / 100.0 ;   // 4.56 

 
Now, this was a fine example of how to truncate, but if you wanted to round, you could 
do that very easily with a call to  Math.round() . 
 

amount  =  amount  *   100 ;   // 456.78 

amount  =   ( int ) Math . round ( amount );   // 457 

amount  =  amount / 100.0 ;   // 4.57 

 

 

Check Yourself 

 
 

1. What is the purpose of casting? 
 
 
 

2. What are the results of the following casts? 
A. double  height  =   5.9 ; 

System . out . println (( int ) height ); 

 
B. int  days  =   365 ; 

double  weeks  =   ( double ) days  /   7 ; 

 
C. int  randomNum  =   75 ; 

System . out . println (( char ) randomNum ); 

 

 
 
 
JAVA: An Open Approach to No Objects Page 99 



§3.6 Order of Operations 

Order of Operations 
 

Precedence 
Just like real math, Java subscribes to the order of operations (remember PEMDAS?). 
There are a few tweaks in Java, but pretty much the precedence should seem familiar. 
One thing to note is that casting takes precedence over mathematical operators. So in 
an expression where there are mathematical operations (like multiplication or addition) 
and also a cast, the cast gets processed first.  
 
After that, the rules are basically the same. The computer will process multiplying and 
dividing first (as it is encountered left to right), then addition and subtraction (as it is 
encountered left to right). You can always toss in parentheses if you want to explicitly 
add and subtract some numbers before multiplying - just like in real math! 
 
The only other issue is the modulo operator ( % ). That has the same precedence as 
multiplication and division. 
 

OPERATOR HOW TO PROCESS LEVEL 

() Want something processed first? Use parentheses! 4 

casting This gets processed before math thingies do 3 

* / % In the order they occur, left to right 2 

+ - In the order they occur, left to right 1 
 

Part of the precedence table in Java. There are many more operators we haven’t learned 
about, so they’re not in this table! 

 

 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 100 



§3.7 The  String  Class - an Object with methods 
Before we get started here, you need to be well aware of what primitive data types are and what 
methods are. Recall the primitive data types like  short ,  int ,  long , and  double  hold the actual 
value of the data. A methods is a block of code that can be called and executed by calling the 
name of the method. Methods are like mini-programs, or subprograms that can be ran. You 
have used method like  println  and   print , and have actually created you own  main  methods 
(although you may not even know what that means until chapter 6). 

We are not going to focus on Java classes and object for this chapter, however, you should 
recall that  String  data is not a primitive type of data.  Strings  are not primitive, but are rather 
complex; they hold data and methods to manipulate that data. 

When  String  data is created, it takes up a larger space in memory that holds the characters 
that make up the string, and methods that can be used to manipulate the characters. You can 
think about the  String  variable like a bookmark (or favorite) to a website. The bookmark refers 
to a web page. The bookmark does not contain the web page itself, just the address of the web 
page.  String  variables are like that - the value of the variable is actually an address that refers 
to the larger spot in memory that contains the data. So the following block of code actually 
creates a variable  testString , and a  String  object in memory with data and methods (see 
diagram) 

String  testString  =   "This is a test String"; 

 

 

 
 
 
JAVA: An Open Approach to No Objects Page 101 



Check out the the Relevant API in the Appendix for sample methods and examples of a few 
classes (including  String ). 
 

Check Yourself 

 
 

1. Why are there multiple methods for  indexOf ? 
 
 

2. How does a  String  (which is an  object ) differ from a variable with a primitive data type? 
 
 

3. What is the difference between a  String  and a  char ? 
 
 

4. Describe the difference between these two lines of code: 

System . out . println (""   +   3   +   4 ); 

and  

System . out . println ( 3   +   4 ); 

 

 

5. Consider the following code: 

public   class  stringQuestion01  { 

   public   static   void  main  ( String []  args )   { 

     String  lyrics  =   " Row  row row your boat ."; 

     int  pos  =  lyrics . indexOf (" row "); 

     System . out . print ( lyrics . substring ( pos ));  

   } 

} 

What is displayed on the screen when the program is run? 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 102 



6. Consider the following code segment: 

String  str1  =   " Happy   "; 

String  str2  =  str1 ; 

str2  +=   " Birthday "; 

str2 . substring ( 6 ); 

System . out . println ( str1  +  str2 ); 

What is the output when the code is executed? 

 

7. Consider the following code segment: 

String  s1  =   " FLCC "; 

String  s2  =  s1 ; 

String  s3  =  s2; 

After this code is executed, which of the following expressions would evaluate to  true ? 

I s1.equals(s3); 
II s1 == s2; 

III s1 == s3; 

(A) I only 
(B) II only 
(C) III only 
(D) I and II only 
(E) I, II, and II 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 103 



§3.8 Important Classes 
There are roughly 4,240 classes in the Java (Standard Edition, 8) language. Classes are 
mini-programs that you can leverage in your own code. Of these classes, there are only a 
handful that we will use this semester. Each class has it’s own  methods  (or certain things each 
class can do). In the  appendix entitled “Relevant API” , you can dig deeper into the classes we’ll 
be using and some of the methods that are useful in each class. 

The classes we will use include  Array ,  Math ,  Random ,  Scanner , and  String . It will probably be 
a little easier to understand the distinction between classes and methods by looking at a specific 
class and examining a few of the methods in that class. 

Math  Class 

The Math class in Java has around one hundred methods. You can  check them out here , but - 
spoiler alert - most of them are kind of boring. The commonplace methods include abs (for 
absolute value), round (for rounding), pow (for raising one number to the power of another), min 
(for finding the smallest number out of a few numbers), and other typical math functions. Below, 
consider this selection from the “Relevant API” which demonstrates some of the methods and 
how to use them: 

Math.pow(double, double) 

This is the real way to do exponents in Java. The first parameter is the base, and the second is 
the exponent. A call to  Math.pow()  requires two numbers - each a  double  - so if you pass in 
two variables of type  int , the result will still be a  double .  

 

Math.random() 

This method requires no parameters, and will return a  double  between  0  (inclusively) 
and  1  (exclusively). That means that you may get  0.0 ,  .45023 ,  .9596942 ,  .9999999 , 
but you’ll never get  1 . If you want a number that is  1  or bigger, you’ll need to multiply by 
10 (or 100, or 1000, etc.). 
 
System . out . println ( Math . random ()); 

// 0.6017376710307702 

 
The above example will generate a random  double  greater than or equal to  0 , but less 
than  1 .  
 
System . out . println ( Math . random ()* 10 ); 

// 7.1687284712872543 

 

 
 
 
JAVA: An Open Approach to No Objects Page 104 

https://docs.google.com/document/d/1tU2DBIsWNFdBZx11CxlXT7tC3c8N7i-12VuaTOj5Rno/edit?usp=sharing
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html


The above example will generate a random  double  greater than or equal to  0 , but less 
than  1 . After that, the number will be multiplied by 10 to make it bigger - the result is that 
you’ll get a number between  0  and  9.999999999999999 ... 
 
System . out . println (( int )( Math . random ()* 10 )); 

// 3 

 

The above example will generate a random  double  greater than or equal to 0, but less 
than 1. After that, the number will be multiplied by 10 to make it bigger - and then it will 
be cast as an  int . So the smallest the result will be is  0 , and the largest is  9 . 
 
System . out . println (( int )( Math . random ()* 10 )   +   1 ); 

// 10 

 

The above example will generate a random  double  greater than or equal to 0, but less 
than 1. After that, the number will be multiplied by 10 to make it bigger - and then it will 
be cast as an  int . And then it will have  1  added to it, so the smallest number is  1  and 
the largest it can be is  10 .  

 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 105 



§3.9 Basic Input  

Getting Basic Input from the User 

One of the most elemental tasks in software design is getting input from the user. The 
walkthrough below may seem complicated, but after a little while, this will be second nature to 
you. The sample is provided in its entirety, and then broken down afterwards: 

Code for Input 

Scanner  scanner  =   new   Scanner ( System . in ); 

System . out . print (" What   is  your age ?   "); 

int  age ; 

age  =  scanner . nextInt (); 

System . out . println (" Your  age  is :   "   +  age ); 

Walkthrough 

Scanner  scanner  =   new   Scanner ( System . in ); 

 

This line of code creates an instance of the Scanner class. You’ll need this class if you 
want to gather input from the user. It’s just the way Java is. The syntax is daunting, but it 
makes sense down the road.  

 

System . out . print (" What   is  your age ?   "); 

 

This is called “prompting the user”. Here we are outputting something to the user and 
asking them to type something in. 

int  age ; 

 

Here we are merely declaring a variable (that can hold integers). We’ve named it “age”, 
and we intend to somehow take whatever the user has entered and put that value into 
age . 

age  =  scanner . nextInt (); 

 

And here’s where that happens! We are asking the  Scanner  that we created (named 
“scanner”) to use the  nextInt  method to store whatever has been typed right into the 
variable  age . Don’t forget that  Scanner  is one of those 4,240 classes that come with 

 
 
 
JAVA: An Open Approach to No Objects Page 106 



Java, and the  nextInt  method is a specific method to  Scanner . If we were asking the 
user for a piece of information that is of type  double , we would have used the 
nextDouble()  method in  Scanner . Or  nextByte()  if we were looking for a  byte . 

 

System . out . println (" Your  age  is :   "   +  age ); 

 

Simple output here. We are literally outputting “Your age is: “ and then outputting the 
value that has been stored in  age . 

 

 

 

 
 
 
JAVA: An Open Approach to No Objects Page 107 



INTRODUCTION TO SELECTIONS 
 

 

“Live by the curly brace, die by the curly brace.” 
- Dave Ghidiu -  

  

 
 
 
JAVA: An Open Approach to No Objects Page 108 



§4.1 Boolean Logic 

Relational Operators and  if  Statements 
The most fundamental part of programming (other than knowing the syntax and language) is 
reasoning. Learning a computer language is very similar to learning a foreign language - you 
can kinda-sorta-maybe get your point across if you know the words, but until you can elegantly 
stitch together a coherent thought, you aren’t going to get much done. 

Up until this point, we’ve really only looked at computations and calculations - we haven’t had 
the computer do what it does best - make decisions. A quick primer on Boolean Logic will help 
frame a conversation on  if  statements and other selections. 

There are only a handful of  relational operators  (things you can use to make a decision). Just 
like the arithmetic operators ( + ,  - ,  * ,  / , and  %),  relational operators are used to compare two 
things (usually numbers).  It is important to note that these relational operators will only work 
with primitive data types. There are different ways for comparing the values of objects such as a 
String  or  ArrayList  - that will be covered much later. For now, you can get by knowing that if 
you are comparing any two objects then you will need to use  equals()  to see if they are equal, 
and use  compareTo()  to see which one is greater. But again, that’s a story for a different time. 

Equals 
The first reaction is to use the " = " if we want to compare to numbers, but that won’t work 
in Java (recall that the equal sign is used to  assign  values to a variable). Instead, we use 
two of them, jammed right next to each other: 

== 

Happily, the equals operator is easy to use. You just stick it between to numbers to see if 
those numbers are equal, and the computer will return either  true  or  false  (it won’t spit 
out the difference between them). 

int  i  =   10; 
int  j  =   150 / 15; 

if   ( i  ==  j )  { 
   ...   // Some special, sweet code 
} 

...   // Other normal, boring code 

In this case, the special, sweet code between the two brackets would be executed 
because the value of  i  does, indeed, equal the value of  j . Also, the other, normal, boring 
code would be executed because that code is in the main program and will run 
regardless of the  if  statement (by the way, we’ll look more at  if  statements in a few 
short moments - all you need to know now is that if the part in parentheses is  true , then 
the code between the brackets after the  if  statement will be run). But let’s look at what 
happens when the two variables don’t equal each other: 

 
 
 
JAVA: An Open Approach to No Objects Page 109 



int  i  =   20; 
int  j  =   150 / 15; 

if   ( i  ==  j )  { 
   ...   // Some special, sweet code 
} 

...   // Other normal, boring code 

Well, in this case, the special, sweet code is  not  executed, although the normal, boring 
code will still be run - that code resides in the main program and is business as usual. 

Not Equal 
Just as the == means equal, Java needs a way to determine if two values are not equal. 

!= 

Syntactically, this is used in the same manner as an equals operator above: 

int  i  =   20; 
int  j  =   150 / 15; 

if   ( i  !=  j )  { 
   ...   // Some special, sweet code 
} 

...   // Other normal, boring code 

In this example, the special, sweet code will be run because  i  has a value of  20  and  j 
has a value of  10 , so they are not equal and  i != j  is  true . Pro-tip: In computer 
nerdom land, they refer to the “ ! ” as a “bang”. 

Greater Than 
If you wish to see if one number is greater than another number, use: 

> 

This will return  true  if the first number is greater than the second,  false  otherwise. 

int  i  =   200; 
int  j  =   40; 

if   ( i  >  j )  { 
   ...   // Some special, sweet code 
} 

...   // Other normal, boring code 

In this code, since the value of  i  is  200  and the value of  j  is only  40 , the special, sweet 
code is executed. However, check out the following code: 

 
 
 
JAVA: An Open Approach to No Objects Page 110 



int  i  =   200; 
int  j  =   40; 

if   ( i  >  j  *   5 )  { 
   ...   // Some special, sweet code  
} 

...   // Other normal, boring code 

In this case, the special, sweet code will not run because the value of  i  is  200  and the 
value of  j  times  5  is also  200 . Technically,  i  is not greater than  j , so the code block in 
the  if  statement brackets does not run. 

Greater Than or Equal To 
In math, we use to ≥ denote a “greater than or equal to”. However, that key doesn’t exist 
on a keyboard. So we use 

>= 

It’s pretty darn similar to the greater than operator, but it also returns true if the two 
values are equal, as well. 

int  i  =   200 ; 
int  j  =   40; 

if   ( i  >  j  *   5 )   { 
   ...   // Some special, sweet code  
} 

...   // Other normal, boring code 

This would return  true  because both values ( i  and  j * 5 ) evaluate to 200. 
 

Less Than 
This is used just like the greater than operator, except it sees if the first number is less 
than the second number. 

< 

Consider this example: 

int  i  =   200; 
int  j  =   400; 

if   ( i  <  j )  { 
   ...   // Some special, sweet code 
} 

...   // Other normal, boring code 

 
 
 
JAVA: An Open Approach to No Objects Page 111 



Because  200  is less than  400 , the conditional is true and the special, sweet code will 
run. 

Less Than or Equal To 
If you’ve made it this far, you probably know how this is going to play out. The symbol for 
less than or equal to is: 

<= 

And it returns  true  if the expression on the left side evaluates to a value smaller than 
the one on the right side. 

int  i  =   200 ; 
int  j  =   - 10; 

if   ( i  <=  j )   { 
   ...   // Some special, sweet code 
} 

...   // Other normal, boring code 

Boo! The special, sweet code is not executed and we never get to see what happens! 
The program just goes to the normal, boring code. 

Boolean Operators 

Boolean operators are a little less intuitive than the relational operators (mostly because we deal 
with relational operators all the time, and have been formally trained on them in school). On the 
other hand, Boolean operators - while intuitive - may require a bit more thinking.  

If you were fortunate enough to take a basic logic class (it used to be in the curriculum for high 
school math), you may remember the words not, and, or, and maybe even exclusive or. 

In Java, we are really concerned with only three of the operators 

NOT 
The NOT operator is also known as a “logical inverter”. We use a “bang” to denote the 
NOT symbol (in symbolic logic, it would be a “~”). 

! 

This changes the value of any boolean value. It’s a toggle switch. So if a statement 
evaluates to  true  and you jam a bang in front of it then the statement becomes  false . 
And vice versa. 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 112 



int  i  =   10; 
int  j  =   150 / 15; 

if   (   !( i  ==  j )   )  { 
   ...   // Some special, sweet code 
} 

...   // Other normal, boring code 

So in this case, the conditional  (i == j)  would be  true . However, since there is a NOT 
in front of the expression, (! (i == j)) , the conditional actually evaluates to  false . It is 
mildly interesting that you could put another bang in front of that original bang to 
reinstate the statement to  true . And again to toggle it back to  false . Of course, in this 
particular example, a savvy programmer would probably have just used the logical 
inverter: 

int  i  =   10; 
int  j  =   150 / 15; 

if   ( i  !=  j )  { 
   ...   // Some special, sweet code 
} 

...   // Other normal, boring code 

AND 
This is pretty much what it sounds like. For an expression to be  true , both parts (the first 
AND the second) need to be  true . We like to use the ampersand to represent AND. In 
fact, we like it so much, we use two in a row: 

&& 

For an AND statement to be  true ,  both  parts need to evaluate to  true .  

int  i  =   20 ; 
int  j  =   31; 

if   (( i  >=   20 )   &&    ( j  <   100 ))   { 
   ...   // Some special, sweet code 
} 

...   // Other normal, boring code 

In the code above, since  i >= 20  is  true  and  j < 100  is  true , then both parts of the 
conditional are  true , and the code in the  if  statement is executed. 

int  i  =   20 ; 
int  j  =   31; 

if   (( i  >   50 )   &&   ( j  !=   40 ))   { 

 
 
 
JAVA: An Open Approach to No Objects Page 113 



   ...   // Some special, sweet code 
} 

...   // Other normal, boring code 

In the segment above, the code in the  if  statement block is not executed because the 
conditional in the  if  statement does not evaluate to  true . While  j != 40  is indeed 
true , it doesn’t matter because  i  is not greater than  50 . At this point, the computer 
knows that the conditional in the  if  statement is  false  and the code in the brackets is 
not run. 

This is known as “ short circuit evaluation ”. Since Java looked at the  (i > 50) 
expression first and determined it was  false , the computer doesn’t even need to look at 
the second clause because it doesn’t matter - the  if  statement conditional is  false  and 
the program skips the code block in the brackets. For the record, the code in the second 
clause could even cause a runtime error, and in this case the software wouldn’t crash. 

OR 
For an OR statement to be  true , only  one  of the components need to be true - but it is 
okay if they both are  true . The character that represents OR in Java is the “pipe”. That’s 
the vertical line that usually is on the key by the “Enter” key. 

|| 
 

Let’s look at some examples: 
 

int  i  =   20; 
int  j  =   31; 
 
if   (( i  >   10 )   ||   ( j  !=   40 ))  { 
   ...   // Some special, sweet code  
} 
 
...   // Other normal, boring code 

 
This one is a no-brainer - both conditions are true, so the special, sweet code is 
executed. Short circuit evaluation happens here, too - since  i > 10  is true, the computer 
doesn’t even bother to look at  j != 40  because the OR statement is already  true . 

 

 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 114 



Check Yourself 

 
 

1. Describe what each of these symbols mean: 

a. == 

b. ! 

c. != 

d. < 

e. <= 

f. > 

g. >= 

h. &&  

i. || 

 

 

 

2. What are the truth values of the following expressions? 

a. 4 > 44 

b. (3 + 4) <= 8 

c. (7 * 5) % 2 == 1 

d. (4 >= 2) && (4 <= 8) 

e. !true 

f. !false 

g. (8/2 == 4) || false 

 

 

3. Describe short-circuit evaluation, and why it is so important. 

 
 
 
JAVA: An Open Approach to No Objects Page 115 



§4.2  if  Statements 

Conditional Statements 
 
if  Statement 
An  if  statement is what allows programs to make decisions, and take bonus pathways. 
They’re pretty much what make computers cool. Not to undermine your work so far, but 
making software that has predetermined outcomes isn’t the epitome of programming! 
 
Think of an  if  statement as a scenic overlook on the highway. Suppose you’re driving 
through Yellowstone National Park. Well, there’s really only one road that goes through 
the park, and you have to drive the length of it. But there are little bonus roads you can 
take along the way; you don’t have to, and even if you do, you’ll  still  have to drive the 
entire road  to the end. But  if  you do take these bonus roads, you may see some cool 
things. 
 

 
 
That’s what an  if  statement is. It’s an optional block of code that may get executed. All 
if  statements have a  condition , and if that condition evaluates to  true , then a whole 
bunch of things can happen. If the condition is  false , then the code in between the  if 
statement brackets won’t execute. It’s one or the other - there is no room for ambiguity. 
Here’s a good example: 

 
 
 
JAVA: An Open Approach to No Objects Page 116 



 
System . out . print ( "Enter a number: " ); 
int  num  =  scanner . nextInt (); 
 
if   ( num  >   5 )  { 

System . out . println ( "Greater than five!" ); 
} 
 
System . out . println ( "Game over." ); 

 
In this example, if the user punched " 6 " into the computer, then the condition  num > 5 
(which is really a question)  would return  true , and the code in the brackets would be 
run. If not, then the code in the brackets would be ignored. In either case, “ Game over. ” 
would be output because it’s just plain ole’ code, not linked to an  if  statement. 
 
Anything can be in the condition, so long as the stuff you jam in there can be evaluated 
to  true  or  false . Good thing you know about  Boolean Logic ! So the following are valid 
examples of the condition: 
 

if   ( num  >   5 )  { 
// code to run if num is greater than 5 

} 
 

if   ( num  <=   10 )  { 
// code to run if num is less than or equal to 10 

} 
 

if   ( num  ==   15 )  { 
// code to run if num precisely equals 15 

} 
 
if   ( num  !=   8 )  { 

// code to run if num does not equal 8 
} 
 
if   (!( num  >   88 ))  { 

// code to run if num is not greater than 88 
} 
 
if   ( firstName . equals ( "Dave" ))  { 

// code to run if firstName equals "Dave" 
// Note that a String can't use == to test for equality 
// because a String isn’t a primitive data type - it’s an 
// object! 

} 
 
if   ( num  %   2   ==   0 )  { 

// code to run if num is even 

 
 
 
JAVA: An Open Approach to No Objects Page 117 

https://docs.google.com/document/d/18OKJaGfRDAxe_7A2psmR7ONfutAge4lSXkGFSITQmyI/pub


// This is CLASSIC computer nerd code! 
} 

 
boolean  isInstalled  =   true; 
if   ( isInstalled  ==   true )  { 

// code to run if isInstalled is true 
} 
 
 
boolean  isInstalled  =   true; 
if   ( isInstalled )  { 

// code to run if isInstalled is true 
} 

 
A few things. First, recall that we use  ==  to test to see if a variable is equal to a value (or 
another variable). This only works with primitive data types; it doesn’t work with objects. 
So if you are attempting to compare an  int ,  double ,  boolean , or  char  (as well as the 
other primitives), you can use the  == . All other things - including  String  - require you to 
use the  .equals()   method . A method is like a small, self-contained program that you’ll 
read about later. 
 
The other thing that is worth mentioning is the funny business with the difference 
between 

if   ( isInstalled  ==   true) 
vs. 

if   ( isInstalled) 
 
These both do the same exact thing. The only difference is that the second option is 
more concise. There is no need to compare the variable to  true  or  false  - it happens 
automatically. 

Common Errors 

Equality 
 
if   ( firstName  ==   "Dave" )  { 

// some code here 
} 
 

The problem here is that we can’t use  ==  to compare the value of a  String . Sure, it 
might work in some IDEs. But that’s due to an optimization - it’s not accurate all the time. 
Different compilers may handle this code differently. Don’t believe me? Sooner or later 
you’ll be using  ==  to compare the values of a  String  and you’ll get wonky results. On 
that day, you’ll thank. By the way - the correct comparison (as we’ve learned earlier) 
should be  if (firstName.equals(“Dave”)) . 

 
 
 
JAVA: An Open Approach to No Objects Page 118 



Assignment 
 
if   ( num  =   10 )  { 

// some code here 
} 
 

In this example, we probably meant to see if  num  was equal to  10 , but recall that the 
single equal sign really assigns a value to the variable. So we’ve inadvertently set the 
value of  num  to  10 . By the way, this code will compile and run, and will most likely result 
in a logical error somewhere. 

Semicolon 
 
if   ( num  ==   10 );  { 

// some code here 
} 
 
   
 

Ahh! The classic semicolon error (in reverse!). Here, the semicolon signifies the end of 
the  if  statement, so the code that we  think  is contingent on the condition (because it is 
in the brackets) is actually not part of the  if  statement. The code in the brackets will run 
regardless of the condition, because the computer sees it as regular old code that is part 
of the program. 

Braces 
 
if   ( num  ==   10 )  

// some code here 
// some more code here 

 
Okay, so, this actually may not always be an error. Sometimes. You see, you technically 
only need the curly braces for an  if  statement if there is more than one line of code that 
should be executed if the condition is  true . So as long as  // some code here  refers to 
only one line of code, everything is great. But the minute there is more than one line of 
code, the program will not work as intended. In the example above,    // some more 
code here  will be run regardless of the state of the condition. Even though the second 
line of code is indented and  looks  like it belongs to the  if  statement, it does not. This 
code is identical to the following (therefore, it’s  always  good to get in the habit of using 
brackets with  if  statements - even if there is only one line of code involved): 
 

if   ( num  ==   10 )   {  
// some code here 

} 
 

 
 
 
JAVA: An Open Approach to No Objects Page 119 



// some more code here 

if-else  Statements 

A twist on the  if  statement is an  if-else  statement. In this structure, the condition is 
tested. If the condition is found to be  true , then the code in the brackets is executed. 
But if the condition is  false , then code written in the  else  part of the block will be 
executed. 
 

if   ( num  % 2   ==   0 )  { 
System . out . println ( "Even number." ); 

}   else  { 
System . out . println ( "Odd number." ); 

} 
 
Looking at this code, let’s say  num  is  8 . Since  8  mod  2  is  0 , the first code block is run and 
“ Even number. ” is output on the screen. But if  num  was  9 , and  9  mod  2  is  1  (which is not 
0 ), then “ Odd number. ” is printed in the console window.Unlike an  if  statement (where 
something may happen or it may not), in an  if-else  statement, one of the the two 
outcomes will always necessarily happen. 

Let’s look at another example: 

Scanner  scanner  =   new   Scanner ( System . in ); 
System . out . print (" Enter  a number :   "); 
int  num  =  scanner . nextInt (); 
 
if   (( num  *   2 )   >   50 )   { 
   System . out . println (" Nice !"); 
}   else   { 
   System . out . println (" Not  nice ."); 
} 

 
In this example, we can expect one of two outcomes - either the word “Nice” will be 
output on the screen, or the phrase “Not nice.” In this case, the user would have to enter 
a number bigger than 25 to get the word “Nice”. 
 

 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 120 



Check Yourself 

 
 

1. Decide if the following code segments will output “YES” or “NO”: 
 

a. int  a  =   10 ; 
if   ( a  /   5   ==   3 )   { 
   System . out . println (" YES "); 
}   else   { 
   System . out . println (" NO "); 
 

b. boolean  b  =   true ; 
if   ( b )   { 
   System . out . println (" YES "); 
}   else   { 
   System . out . println (" NO "); 
 

c. char  c  =   ' a '; 
if   ( c  >   ' A ')   { 
   System . out . println (" YES "); 
}   else   { 
   System . out . println (" NO "); 
} 
 

d. double  d  =   55.5 
if   ( d * 10   >   555 )   { 
   System . out . println (" YES "); 
}   else   { 
   System . out . println (" NO "); 
 

e. int  e  =   10 ; 
int  f  =   20 ; 
if   (( e  >   30 )   ||   ( f  >  e ))   { 
   System . out . println (" YES "); 
}   else   { 
   System . out . println (" NO "); 
  
 

2. What is the difference between an  if  statement and an  if-else  statement? 
 
 

3. Write a small program that generates a random number (using the  Math.random() 
method), and if the result is less than  .5 , display “Heads”. Otherwise, display “Tails”. 

 
 
 
JAVA: An Open Approach to No Objects Page 121 



COMPLEX SELECTIONS 
 

 

“The ‘what-ifs’ and ‘should-haves’ will eat your 
brain” 

- John O’Callaghan -  

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 122 



§5.1 Multiple Conditionals 

Multiple  if-else  Constructs 

So, things can get a little wacky here. In a regular  if-else  statement, there are exactly two 
outcomes. But sometimes you want more than two choices. It’s possible to use multiple 
if-else  statement during these times. Keep in mind that, just like an  if-else  statement, only 
one outcome is possible. 

 
System . out . print ( "Enter grade: " ); 
String  letterGrade; 
int  grade  =  scanner . nextInt (); 
 
if   ( grade  >   90 )  { 
  letterGrade  =   "A"; 
}   else   if   ( grade  >   80 )  { 
  letterGrade  =   "B"; 
}   else   if   ( grade  >   70 )  { 
  letterGrade  =   "C"; 
}   else   if   ( grade  >   65 )  { 
  letterGrade  =   "D"; 
}   else  { 
  letterGrade  =   "F"; 
} 
 
System . out . println ( "The grade is: "   +  letterGrade ); 
 

In this case, the program will assign a value to  letterGrade  based on the value of  grade . 
Think of this as a sieve - if grade is  72 , then the first  if  statement fails, so does the second. But 
the condition in the third  if  statement is  true , so  letterGrade  is assigned a value of " C ", and 
then the  if -block stops and moves on to the next line of code (in this case, a 
System.out.print()  statement). Note that there are logical mistakes that can be made. 
Consider the following code (which is just the upside down version of the code we just looked 
at): 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 123 



String  letterGrade  =   ""; 
 
if   ( grade  >   65 )  { 
  letterGrade  =   "D"; 
}   else   if   ( grade  >   70 )  { 
  letterGrade  =   "C"; 
}   else   if   ( grade  >   80 )  { 
  letterGrade  =   "B"; 
}   else   if   ( grade  >   90 )  { 
  letterGrade  =   "A"; 
}   else  { 
  letterGrade  =   "F"; 
} 
 
System . out . println ( "The grade is: "   +  letterGrade ); 

 
The problem here - even though everything might look OK - is that because of the way the  if 
statements are structured, the user will most likely get erroneous results. Let’s consider the case 
of the  72  again. We know it should be a “ C ”, but in this code, a “ D ” is returned! That’s because 
the first test - is  grade  greater than  65  - is  true . And because an  if-else  block can only have 
one outcome, the first outcome that is  true  is returned. That means that all grades above a  65 
will earn a “ D ”, and anything  65  or less would result in an “ F ”. This is a pretty common logic error, 
and it’s why I prefer to deal with  switch  statements (when possible). If you can’t use a  switch , 
you’ll just need to be extra careful and test the code thoroughly. 
 
The other kernel of wisdom in this code snippet resides in the first line - assigning (or initializing) 
the value of  letterGrade . It’s always good to assign a value to a variable before that variable is 
tested in some  if  statements. Even though we know that once the  if-else  block is done, 
letterGrade  should have a value, there might be times when we  think  this is true but it really 
isn’t. So if the whole  if-else  block executes and  letterGrade   still  doesn’t have a value, when 
the last line runs and tries to output the value of  letterGrade , bad things will happen. Like, 
your software will crash (more likely, it won’t even compile). If you get a “ local variable may 
not have been initialized ” error, it’s because there is a chance that the variable will never 
get a value assigned to it.  
 
 

 
 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 124 



Check Yourself 

 
 

1. Is there a difference between a whole bunch of  if  statements and one construct that is a 
number of  if-else  statements? 
 
 
 

2. Consider this code segment: 
 

if   ( age  >   62 )   { 

  status  =   "retire" ; 

}   else   if   ( age  >=   40 )   { 

   Status   =   "over the hill" ; 

}   else   if   ( age  >=   35 )   { 

  status  =   "run for president" ; 

}   else   if   ( age  >   24 )   { 

  status  =   "rent a car" ; 

}   else   if   ( age  >=   18 )   { 

  status  =   "lotto" ; 

} 

 
What is the output for each of these values of  age ? 
 

A. 70 

B. 61 
C. 24 
D. 35 
E. 36 
F. 34 
G. 17 
H. -1 

 
 
 
 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 125 



3. There are issues with each of the following lines of code. Find them, and describe them. 
 

A. int  num  =   10 : 

if   ( num  >   15 );   { 

   System . out . println ( "Bigger than 15" ); 

} 
 

B. Scanner  scanner  =   next   Scanner ( System . in ); 

System . out . print ("Enter a name: " ); 

String  choice  =  scanner . nextLine (); 

 

if   ( choice  ==   "The Rock" )   { 

   System . out . println ( "Can you smell what The Rock is cooking?!?" ); 

} 

 
C. double  gpa  =   2.49 ; 

if   ( gpa  >   3.49 )   { 

  letterGrade  =   'A' ; 

};   else   if   ( gpa  >   2.99 )   { 

  letterGrade  =   'A-' ; 

};   else   { 

  letterGrade  =   'B' ; 

} 

  

 
 
 
JAVA: An Open Approach to No Objects Page 126 



§5.2 Compound Conditionals 
A  compound conditional  is nothing more than an if statement that tests multiple conditions. 

And 

A conditional can have more than one component - for instance, a Lego sorting machine may 
be concerned about not only the width of a Lego brick, but the length too: 

 

In this case, the Lego sorting algorithm may do a preliminary sort and want to consider any brick 
that is at least two rows wide and four columns long. The key concept is  and  - both conditions 
must be true. The code may look like this: 

if   ( brickWidth  >=   2   &&  brickLength  >=   4 )   { 
// do something cool 

} 

For clarity, engineers may include each individual condition in parentheses. This is a good habit 
to get into as it will most certainly prevent errors later on: 

if   (( brickWidth  >=   2)   &&  (brickLength  >=   4) )   { 
// do something cool 

} 

Note that one of the optimizations that Java compilers make at runtime is  short-circuit 
evaluation . In the case of  &&,  the compiler will look at the first conditional. If the test fails, the 
compiler knows that even if the second part is true the code isn’t going to execute. So why 
bother wasting time to see what the second part is? 

 

if   (( brickWidth  >=   2)   &&  (brickLength  >=   4) )   { 
// do something cool 

} 

 
 
 
JAVA: An Open Approach to No Objects Page 127 



Looking at the code, it doesn’t really matter what the value of  brickLength  is because the 
totality of the  if  statement will be  false  in this case. In fact, the second condition may even 
include code that would cause a runtime error, but the compiler will not fault because the 
second condition doesn’t even get considered: 

int  brickwidth  =   1 ; 
if   (( brickWidth  >=   2 )   &&   ( 5 / 0   >   1 ))   { 

// do something cool 
} 

Eventhough  5/0  should throw an error, the program works fine because that specific piece of 
code is never evaluated. 

Or 

An  or  statement is represented by the symbol  || . Software engineers refer to this symbol, the 
vertical line above the “Enter” key, a “pipe”. The or statement requires that at least one of the 
conditions be true - but if they both are, that’s cool too!  

Going back to the Lego sorting example, let’s imagine that the sorter now only cares about 
colors of bricks, and at this stage the algorithm should be sorting out bricks that are either red or 
bricks that are yellow. 

if   (( brickColor . equals (" red ")   ||  brickColor . equals (" yellow ")   { 
// do something cool 

} 

Note that short circuit evaluation applies with  or  statements, too. So if a brick is evaluated and it 
is red, then the second part of the conditional is not even tested. 

Ands and Ors  

It is possible to mix and match  and  with  or  statements. It is critical to use parentheses when 
doing this because not only will it make for clearer code, but the precedence of  &&  is greater 
than that of  || , so without parentheses, it is very easy to make a mistake. The same rules 
apply;  &&  statements are contingent on both components being  true , whereas an  ||  statement 
only needs one to be  true . 

if   ((( a  >   10 )   &&   ( b  <   50 ))   ||   ( c  ==   30 ))     { 
// do something cool 

} 

The rules for  && s and  || s still hold - an AND statement requires both parts to be  true , whereas 
an OR statement only needs one to be  true . But using parenthesis is even more critical here 
because  &&  takes precedence over  ||.  So in the next two code segments, the output would be 
different based on nothing more than parenthesis: 

 
 
 
JAVA: An Open Approach to No Objects Page 128 



 

if  (A  ||  B  &&  C) 

In the above example, the computer first sees if  B  and  C  are both  true . If they are, then it will 
see if  A  is  true .  

if  ((A  ||  B)  &&  C) 

In the above example, the computer first sees if either  A  or  B  are  true . If one of them is, then it 
will see if C is  true .  

Other Operators 

There are a few other operators that are not relevant right now, but may be handy down the 
road. Look for the  ̂   bitwise operator, as well as  &  and  |  (all of which are described  here ). 

! 

The exclamation point (or “bang” as it is known in the biz) means “not”. It flips the truth value of 
any boolean value (which includes the result of a logical test). Consider this code: 

boolean  a  =   true ; 
System . out . println ( a  +   "   "   +   ! a ); 

The output would be: 

 
true false 

 

This is handy in a few different situations. Most notably, this is great for toggling the truth value 
of a boolean. A pervasive example is seen in websites - the code to expand or collapse some 
content.  

 

In this case, there is probably a variable called  isVisible  and it is initially set to  true . When 
the button is clicked, the program has to flip the state of  isVisible . There are two ways to do 
this: 

isVisible  =   ! isVisible; 

 
 
 
JAVA: An Open Approach to No Objects Page 129 

https://www.tutorialspoint.com/java/java_basic_operators.htm


or 

if   ( isVisible  ==   true )   { 
isVisible  =   false ; 

}   else   { 
isVisible  =   true ; 

} 

Clearly, the first example is preferred. 

DeMorgan’s Law 

So there is this odd behavior when negating compound conditionals. If you’ve studied logic, 
then you are probably familiar with DeMorgan’s Law (and if you are a fan of the Showtime series 
Dexter, Dexter Morgan and Deborah Morgan are both nods to DeMorgan’s Law, as  this post 
suggests ). 

Essentially, the law dictates that if we negate an AND statement, we are really looking at 
negating both components and replacing the AND with an OR: 

Given 

boolean  a  =   true ; 
boolean  b  =   false; 

Then the following two equivalences are true: 

!(a && b)  is equivalent to  (!a || !b) 

and 

!(a || b)  is equivalent to  (!a && !b) 

All this talk about DeMorgan’s Law may seem in the weeds a bit, but you may find that a logical 
error manifests in your code because of this! 

 
 
 
 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 130 

https://dissectingdexter.wordpress.com/2015/07/31/did-you-know-dexter-and-debras-names-refer-to-the-de-morgan-laws/
https://dissectingdexter.wordpress.com/2015/07/31/did-you-know-dexter-and-debras-names-refer-to-the-de-morgan-laws/


Check Yourself 

 
 

1. What is the output of this code? 
 

boolean  a  =   true ,  b  =   true ,  c  =   false ,  d  =   true ; 

 

if   ( a  ||  b  &&  c  ||  d )   { 

   System . out . println (" Who  lives  in  a pineapple under the sea ?"); 

}   else   { 

   System . out . println (" SpongeBob !"); 

} 
 

2. Describe the significance of this code segment: 
 

boolean  isLightOn  =   false ; 

isLightOn  =   ! isLightOn ; 

 

 

 
3. Write down statements that are logically equivalent to the following: 

 
A. !(a && b) 
B. !(c || d) 
C. !(!e && f) 
D. !(g || !h) 
E. !(!i && !j) 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 131 



§5.3  switch  Statements 

switch  Statement 

A  switch  statement is a more readable version of  if-else  statements - and slightly more 
restrictive. In general,  switch  statements are more readable to humans and provide a logical 
structure for program decisions. Unlike  if  statements, they cannot easily process a range (for 
instance, if the value of  grade  is greater than  79.49  but less than  89.5 ). 

Moreover a  switch  statement only works with variables of type  byte ,  short ,  char , or  int . A 
switch  can also work with a  String  and a few other special cases, though nothing we’ll 
examine here. Don’t forget that with  String s, we can’t use the  ==  relational operator, but that’s 
okay because Java handles all the comparing in a  switch  statement. 

The following code demonstrates the implementation and visual simplicity of a  switch 
statement: 

int  dayOfWeek  =   5 ; 

String  day  =   "" ; 

 

switch ( dayOfWeek )   { 

case   1 : day  =   "Monday" ; 

break ; 

case   2 : day  =   "Tuesday" ; 

break ; 

case   3 : day  =   "Wednesday" ; 

break ; 

case   4 : day  =   "Thursday" ; 

break ; 

case   5 : day  =   "Friday" ; 

break ; 

case   6 : day  =   "Saturday" ; 

break ; 

case   7 : day  =   "Sunday" ; 

break ; 

default : day  =   " no day "; 

break ; 

} 

 

System . out . println ( "The day is "   +  day ); 

 
The day is Friday 

 
 
 
JAVA: An Open Approach to No Objects Page 132 



 

There are two things to notice in the example above: the  break  statement and the  default 
statement. There’s more about  break  in the next section, but let’s look at  default . The code for 
default  gets used only when the variable that is being switched does not fall into any of the 
cases. In our example about days of the week, this means that if the user entered 8 as input, 
then the computer would compare that input against all the cases. Since there isn’t a  case  for 8, 
then the  default  code is executed. 

Falling Through 

A  break  statement is what tells the computer to stop examining the code in the  switch 
statement. Most likely, we’ll see a  break  statement after every  case . But that isn’t always going 
to happen. Let’s look at Kickstarter as a real world example.  

If you’ve never seen Kickstarter, it’s a website where entrepreneurs can list their product and 
visitors to the website can decide to “back” the project by giving some money. Typically, there 
are different levels. Let’s imagine a Kickstarter for a board game called The Cones of Dunshire. 
There could be several different levels of giving: 

$5 Bumper sticker 

$15 T-Shirt 

$50 One copy of Cones of Dunshire 

$90 Ledgerman Hat 

$150 Figurine collection (Arbiter, Wizard, Maverick, Warrior, 
and Corporal) 

In Kickstarter, usually if a giver backs at a certain level, they will get the reward at that level  and 
all the previous levels . In Java, one way to accomplish this is to omit the  break  statements and 
letting the code fall through: 

int  amount  =  scanner . nextInt ();   // Get input from user 
String  reward  =   ""; 
 
switch   ( amount )   { 

case   150 : reward  +=   " figurines "; 
case   90 : reward  +=   "  hat "; 
case   50 : reward  +=   "  game "; 
case   15 : reward  +=   "  shirt "; 
case   5 : reward  +=   "  sticker "; 

break; 
default : reward  =   " none "; 

} 
 
System . out . println (" You  will receive :   "   +  reward; 

 
 
 
JAVA: An Open Approach to No Objects Page 133 



Because there is no break statement, all the cases after the entry point are executed. In the 
Cones of Dunshire example, let’s imagine the backer pledged $50. Then the  switch  statement 
will not execute the code for the case 150 and case 90, but  will  execute case 50. After that, the 
subsequent lines of code will be executed (until a break is encountered). 

 
You will receive:  game shirt sticker 

 

This is known as “ falling through ”, and many newer programmers encounter this by accident 
(omitting the break statements accidentally). 

Multiple Case Labels 

Occasionally, there could be a time when multiple case labels should behave the same way. In 
these cases, it is preferred to consolidate them: 

int  num  =  scanner . nextInt ();   // Get a number from the user  
 
switch   ( num )   { 

case   2 : 
case   3 : 
case   5 : 
case   7 : System . out . println ( "Prime number!" ); 

break; 
case   4 : 
case   6 : 
case   8 : 
case   10 : System . out . println ( "Composite!" ); 

break; 
} 

This is really nothing more than a perversion of falling through, but it looks pretty nice and easy 
to read. 

 

Check Yourself 

 
 

1. Describe what the notion of falling through is, and compare it to  if  statements and 
if-else  statements. 

 
 
 
JAVA: An Open Approach to No Objects Page 134 



§5.4 Scope 

Defining Scope 

Scope  refers to the visibility of a variable. The ability to recall a variable is granted exclusively to 
methods (loops, statements) where the variable lives. For instance, consider this code: 

int  num  =   10 ; 
if   ( num  %   2   ==   0 )   { 
   String  remainder  =   " even "; 
} 
System . out . println (" The number is  "   +  remainder ); 

In executing this code, we might expect that the output in the console would be:  

 
The number is even 

 

But in reality, there is an error (probably a   cannot find symbol   error)! This is because the 
call to the variable  remainder  is outside the  if  statement where  remainder  was declared. 
Because of scope,  remainder  is only available within the  if  statement. So to ameliorate the 
issue - and to write better code - it’s a better idea to declare the variable before the  if 
statement: 

int  num  =   10 ; 
String  remainder ; 
if   ( num  %   2   ==   0 )   { 
  remainder  =   "even" ; 
} 
System . out . println ( "The number is "   +  remainder ); 

In this example, we are getting closer! Conceptually, this should work (because the scope of 
remainder  isn’t an issue). Again, the output should be what we want because the program can 
access the variable remainder (because it was declared outside of the  if  statement): 

 
The number is even 

 

But we still have a problem… even though we think the code should work - it doesn’t. We will 
most likely get an error (specifically,  variable remainder may not have been 
initialized ). This doesn’t make sense because we  know  that if  num  is  10 , then the  if 

 
 
 
JAVA: An Open Approach to No Objects Page 135 



statement 

if   ( num  %   2   ==   0 ) 

fires, and  remainder  takes on a value -  "even" . But the computer doesn’t necessarily see 
things this way. Because as written, the code opens up the possibility of  remainder  not having 
a value. Consider if  num  was  11 . In that case, the  if  statement doesn’t trigger, and we are left 
trying to output a variable that does not have any state! 

The best way to avoid this is to declare the variable and load it with a dummy value: 

int  num  =   10 ; 
String  remainder = "" ; 
if   ( num  %   2   ==   0 )   { 
  remainder  =   "even" ; 
} 
System . out . println ( "The number is "   +  remainder ); 

This code is perfect! The variable remainder is scoped such that any code that needs access to 
remainder can see it, and it is assigned a dummy value (alternatively, we could have ensured 
that remainder has a value before it is output, as in the following code).: 

int  num  =   10 ; 
String  remainder ; 
if   ( num  %   2   ==   0 )   { 
  remainder  =   "even" ; 
}   else   { 
  remainder  =   "false" ; 
} 
System . out . println ( "The number is "   +  remainder ); 

Either of these solutions is acceptable, but the example immediately above is preferred because 
remainder  will always have a dependable value  because we coded every possibility .  

An easy way to remember scope is that variables live and die in the brackets they are born in. 
For instance in the following code,  probability  cannot be referenced outside of the  if 
statement:  

if   ( headsOrTails . equals ( "heads" ))   { 
   double  probability  =   . 5 ; 
} 
 
System . out . println ( probability );   // error! 

This means that it’s completely legal to have two (or more!) different variables with the same 
name! But that is not a good idea. At all. 

 

 
 
 
JAVA: An Open Approach to No Objects Page 136 



Local and Global Variables 

A global variable can be referenced from anywhere in the program. It is declared at the top level 
of a program - outside from any methods. 

public   class   Gradebook   { 
 
   public   int  numOfStudents  =   30 ; 
 
   public   static   void  main  ( String []  args )   { 
     System . out . println ( numOfStudents ); 
     int  totalPoints  =   1200 ; 
     System . out . println ( computeAvg ( totalPoints )); 
  } 
 
   public   static   double  computeAvg  ( int  points )   { 
     return  points / numOfStudents ; 
       // 40 

// Great success! 
  } 
} 

In this example, it is okay to reference  numOfStudents  from the  computeAvg  method because 
numOfStudents  is visible to all methods. That’s the beauty of a global variable! As an aside, 
while there may be times to use global variables, you should try to avoid them if possible. They 
can cause confusion down the road, and unless there are compelling reasons to use global 
variables, you should avoid them. 

One of the pitfalls of global variables is that there can be confusion with local variables that have 
the same name. Let’s look at the same code, but this time let’s look at the method  computeAvg 
a bit closer (the change is highlighted): 

public   class   Gradebook   { 
 

int  numOfStudents  =   30 ; 
 

public   static   void  main  ( String []  args )   { 
 

System . out . println ( numOfStudents ); 
int  totalPoints  =   1200 ; 
System . out . println ( computeAvg ( totalPoints )); 

 
} 

 
public   static   double  computeAvg  ( int  points )   { 
 

int  numOfStudents  =   10 ; 
return  points / numOfStudents ; 

 
 
 
JAVA: An Open Approach to No Objects Page 137 



// 120 
// Great success? 

 
} 

} 

In the event of a collision, the local variable will always trump the global variable. 

We’ll talk more about scope in the next chapter. 

 

Check Yourself 

 
 

1. What do you think will happen when this code is executed? 
 

int  num  =   10 ; 

int  num2  =   20 ; 

 

if   ( num  >   5 )   { 

   int  num2  =   30 ; 

   System . out . println ( num2 ); 

} 

 

System . out . println ( num2 ); 
 
 
 

2. What do you think will happen when this code is executed? 
 

for   ( int  i  =   0 ;  i  <   10 ;  i ++)   { 

   System . out . println ( i  +   "   "); 

} 

 

for   ( int  i  =   0 ;  i  <   10 ;  i ++)   { 

   System . out . println ( 2 * i  +   "   "); 

} 

 

 
3. In your own words, describe ‘scope’. 

 
 
 
JAVA: An Open Approach to No Objects Page 138 



METHODS 

 

“Though this be madness, yet there is method in it.” 
 

- William Shakespeare - 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 139 



§6.1 Why use Methods? 
So far, the programs studied in this book have been about practicing the fundamentals so they 
are short programs. Typical programs like phone apps, word processors, web browsers, and 
games require thousands of lines of code. Managing a program like that requires breaking the 
larger functionality of a program into smaller functions. Java offers an organized way to contain 
code in modules with a single purpose:  methods . You may recognize methods by other names 
in different languages: functions, procedures, or subroutines, for instance. 

Methods To The Rescue 

If your program is a united league of super heroes, the methods are the individual super heroes, 
each with a specific superpower. Don’t forget that YOU are the programmer, which gives you 
the awesome capability to, using code, endow the hero with superpowers you invent and then 
name them. When disaster strikes and there are problems to solve you call them into action by 
name, “ adderGirl() , add the numbers  23423  and  282757 , quick!  diceRollerGuy() , give me 
a random number up to  6 !  sortBoy() , sort the list of targets by strategic value!  glitchGal() , 
make that villain’s computer crash!” 

Can we stretch this analogy a bit further? To explore how we might declare our own methods, 
let’s head to the lab and mix some super secret serums to imbue  glitchGal  with power! Note: 
since methods are really about one primary action, programmers almost always name them 
using a verb. Let’s go with  glitchGal ’s nickname which can also work as a verb, glitch. 

 

public   class   GlitchLabExperiment  {  
   public   static   void  main ( String []  args )  { 
  
    glitch ();   // Call glitch into action! 
     System . out . println ( "If glitch doesn't break program, we get back here" ); 
  
   }   // end of main method 
  
   public   static   void  glitch ()  { 
     // barf out scary-looking random characters within the ascii subset 
    // of unicode 
     int  count  =   1; 
 
     while   ( count  <=   1000 )  { 
       System . out . print (   " "   +   ( char )(( int )( Math . random ()* 128 ))   );  
       //chars 0-127 
  

 
 
 
JAVA: An Open Approach to No Objects Page 140 



      count ++; 
     }  
 
    count  =  count  /   0 ;   // this looks dangerous 
   }   // end of glitch method 
}  

 

You should try running this code, but even if you don’t, take a close look at it, and try to figure 
out what it does — the comments will help. 

Did you notice that  glitch()  has a  header  that looks very similar to  main() ? The header is 
also known as a  method signature . 
 
 

public   static   void  glitch ()  { 
   //... 
} 

 
 
The code inside the braces is the body of the glitch method and defines what should happen 
when  glitch()  is called. The header plus the body is called a  method declaration . 

Notice that  glitch()  and  main()  are equals when it comes to indenting, too. This is because 
they are both methods, but  main  is a bit special. The main method is always the first hero to be 
called into action when a problem needs solving; it is the leader of the team. In other words, 
when a Java program is executed, it looks for a  main  method to start executing. Even if it was 
listed after the  glitch()  declaration, the program would start with  main() . 

One of  main() ’s commands is to call  glitch()  into action. In the main() method, this statement 
does not  declare  glitch():  
 

glitch (); 
 
Instead, it causes a jump to the code inside the  glitch()  declaration below the main method 
declaration —  main()  asks  glitch()  to do her part in solving the problem, and she takes over 
until she is done with her task. After  glitch()  is done,  main()  would normally take command 
again. In this case,  glitch()  may break everything with a divide by zero! 

Java classes can contain many methods to jump between. You never know when 
diceRollerGuy()  and  adderGirl()  will be needed! The code below shows how this might be 
organized, with the bodies of the methods unfinished — methods with incomplete bodies are 
called  method stubs , and sometimes programmers use them while outlining larger programs. 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 141 



public   class   GlitchLabExperiment  { 
  
   public   static   void   main ( String []  args )  { 
     // code that calls glitch(), diceRoller(), and adder() to fight super  
    // villains! 
 
   }   //end of main 
  
   public   static   void   glitch ()  { 
     // code to glitch: maybe calls to add() and rollDice() could go here…  
  } 
 
   public   static   int   rollDice ()  { 
     int  result; 
     // code to set result randomly... 
     return  result; 
  } 
 
   public   static   double   add ( double  a ,   double  b )  { 
     int  sum; 
     // code to add a and b and store in sum 
     return  sum; 
  } 
}  

 
 
Even with only these stubs, try to imagine how the flow of the program would jump from one 
method to the next. From  main()  there could be a call to  rollDice()  to help make a decision, 
then when control comes back to  main()  maybe a call to  add() . When  add()  is finished and, 
once again, control goes back to  main() ,  glitch()  could be called. Notice that any method 
can call other methods. So  glitch()  could also make a couple of calls to  rollDice()  or  add() 
when it needs to. Eventually, control would usually come back to  main()  and, when the end of 
main()  is reached, the program would end. 

 
 
 
 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 142 



Check Yourself 

 
 

1. What makes the  main  method special? 
 
 

2. What term is used to describe methods declarations with enough detail to be called but 
have bodies that are incomplete? 
 
 

3. Because they are used for actions, it is good practice to name methods using a verb, 
true or false? 
 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 143 



§6.2 Method Benefits (Not Just Blocks of Code) 
Containing code in sections might make you think of blocks of code, like the block of code that 
is part of an  if  statement between the opening and closing braces. 
 

if   ( method  >  block )  { 

    methodScore  =  methodScore  +   1; 

     System . out . println ( "Score one for methods" ); 

} 
 

 

This is a valid observation. Blocks of code surrounded by braces in Java have some of the 
same characteristics as methods. For instance, they have their own  scope  for any variables 
declared inside them making that variable unreachable from the outside. 
 

if   ( method  >  block )  { 

   int  test  =   5 ;   // test is declared here and can't escape 

} 

 

System . out . println ( test );   // test is an unrecognized identifier here! 
 
 
However, there are some key reasons to write a method instead of just blocks of code: 

1. It has an identifier:  A method is  named ,  meaning you can call it into action by name 
whenever you need it. 
 

2. You can argue with it:  A method can take arguments , data that is passed to it so that it 
can be flexible. 
 

3. It gives back:  A method can return data  to whichever method called it into action, once 
it has completed its task. 
 

4. It’s reusable : A method that can be called by name, be given different sets of data to 
work on, and return a result can be useful to call on many times in a program. A good 
example is a program with a menu - the method that displays the  menu can be called 
repeatedly. Sometimes methods are made to be used in many programs, too. 
 

5. It has secrets:  A method is encapsulated , meaning it can be called into action even if 
you can’t see the code that makes it work. Think of  println() , for instance! Even if you 

 
 
 
JAVA: An Open Approach to No Objects Page 144 



write the method yourself, you may never look at it again — one less piece of a problem 
to hold in your mind. 
 

6. Some blocks of code want to be methods   when they grow up . Yes, this is 
metaphorical, but you should always imagine a block of code this way, and occasionally, 
it will make sense for you to fulfill its dream — take a block of code and make a new 
method out of it. 

 

Check Yourself 

 
 

1. What problems can you guess might happen if you copy and paste the same code in 
several places within a program, especially over time? 
 
 

2. What can you do to avoid the problems in question 1? 
 
 

3. The following code produces an unrecognized identifier error on secret in  main() . Why? 

public   class   Scope   { 

   public   static   void  whisper ()   { 

     int  secret  =   481516 ; 

   } 

  

   static   void  main ( String []  args )   { 

    whisper (); 

     System . out . println ( secret ); 

   } 

} 

  

 
 
 
JAVA: An Open Approach to No Objects Page 145 



§6.3 Predefined Methods: Learn from Math  
The Java language specification includes a set of standard libraries for programmers to take 
advantage of. So, let’s take advantage. 

Math  is a class in a standard library package called  java.lang . We’d also find other common 
classes like  String  and  System  (remember  System.out.println()  ?) in the  java.lang 
package. Because it has such commonly used classes, the  java.lang  package is automatically 
imported into every Java program — unlike the  java.util  package classes, such as  Scanner , 
which need to be explicitly imported. 

You can check out the  Math  class documentation here: 
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html  

And you can consult the Relevant API in the appendix of this book for a look into the most 
common methods we will use from the  Math  class. 

Math  has many methods we can use to solve problems, but our biggest problem right now is 
learning how to use and make our own methods, so we will also study how the  Math  methods 
work. 

Using Returned Values 

Let’s start with  random() . 
 

double  test  =   Math . random (); 

// assigns 'test' a random number >= 0.0 and < 1.0 
 
It’s part of the imported  Math  class, so to reference it, we connect it to  Math  with a  dot operator 
— sometimes called a  member operator  and, technically, a  separator . You can read it as 
“Math dot random”, but it means, “Call the random method that’s a member of the  Math  class.” 

random()  is a handy method for adding some unpredictable elements to a program, and it’s 
notable because it gives back. In other words, when you call this method it returns a value, that 
random number we want. Note that a call to random() will only return a double that is greater 
than or equal to  0  and less than  1  - so you’ll end up with numbers like  0.001 ,  0.654 ,  0.99999 , 
and so on. 

Most of the  Math  methods return values, which makes them very helpful. Think of each method 
in  Math  as a mini-program that does one very specific task. Because of this, every method also 
requires YOU, the programmer, to be very specific with how you handle the information it 

 
 
 
JAVA: An Open Approach to No Objects Page 146 

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html


returns to you. Consider this example: 

int  test  =   Math . random ();    //syntax error! 
 

The type of data returned by  random()  is  double  and you can’t assign it to an integer variable 
— Java won’t force a  double ’s round peg into an  int ’s square hole because it would lose data.  

You can get a hint about how  random()  is defined in the documentation: 
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random—  

 

static double random () 

Returns a positive double greater than or equal to 
0.0 and less than 1.0 

 
 
See the data type to the left of  random() ? That’s the  return type . You can make methods that 
return a value of any data type, or return nothing. Use the keyword  void  as your return type, like 
main()  does, as a placeholder to show that a method doesn’t return a value. 

Getting More Out Of  Math.random() 

Let’s talk about using  random()  to get integer numbers in any range. Since we can’t get 
Java to assign  random() ’s returned  double  value to an  int  automatically, let’s force it 
using typecasting, instead. 
 

int  test  =  (int) Math . random ();    //No syntax error, but always zero! 
 
This removes the syntax error, but doesn’t give us anything usable. It will always 
truncate the number, removing everything after the decimal point. This is why it’s called 
type narrowing  —  we lose information. All results from  random() , like  0.5 ,  0.353 , or 
0.98 , for example, will become an integer value of zero. 

To get random integer results, you can treat the resulting  random()   double  as a 
percentage. Remember, 0.50 is 50%. So, if we multiplied 80 by 0.5 we’d get 40.0. If we 
multiplied 80 by 0.0, we’d get zero. If we multiplied 80 by 0.01 we’d get 8.0. If we 
multiplied 80 by 0.99, we’d get 79.2 — which doesn’t quite get us to 80. If we convert all 
of those results to  int s, we can get a random result between 0 and 79 inclusive (never 
an 80).  

Here’s the code to do that: 
 

int  test  =  (int)( Math . random () * 80); 

//integers from 0 to 79 inclusive 

 
 
 
JAVA: An Open Approach to No Objects Page 147 

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random%E2%80%94


 
Note the very important parenthesis around  Math.random() * 80 . If you were to 
remove them, you would first typecast the  random()  result into an  int , making it a zero. 
Of course, that would then multiply the 80 by zero and you’d be back to getting zero 
every time. 

How about 1 to 80, instead, and 0 to 80? 
 

int  test  =  (int)( Math . random () * 80) + 1; 

// integers from 1 to 80 inclusive 

 

int  test  =  (int)( Math . random () * 81); 

// integers from 0 to 81 inclusive 
 

Incidentally, you may want to research the  Random  class (that’s also in the Relevant API) 
that is part of the  java.util  package for some more convenient random number 
generating methods. 

 
More Ways to Use Methods 
Math.random() ’s  double  return type means this method can be called anywhere we can place 
a  double  value. Think that through - anywhere you might put a variable with a  double  value in 
it, or just type a  double  literal into code, you could also put a method that returns a  double 
value. That’s because when it completes its work, it gives back a  double  to use in the place it 
was called from. 
 
So, like before, we can call it when assigning a value to a variable. 
 

double  randomPercentage  =   Math . random (); 
 
We can  also  call a method as an  argument  to another method call — more on arguments later. 
 

System . out . println ( 123.456 ); 

// a double value passed to println() 

 

System . out . println ( Math . random ()); 

// returned double value passed to println() 
 
We can  also  use a call to a method as part of an expression like this: 
 

double  result  =  2.5 + 670 +  Math . random (); 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 148 



To help you understand how to use methods that return values, let’s examine how the code 
above plays out when executed.  

It really doesn’t complete work from left to right, does it? Before the variable named  result  can 
get a new value assigned to it, we have to solve the expression to the right of that assignment 
operator ( = ). The expression is going to involve some adding because of the addition operator, 
but the first real action is to find out what  random()  is going to give us!  

So, it jumps over to the  random()  method, does the work, and gives us back, we’ll say,  0.33 . 
Now, the expression is simplified to  2.5 + 670 + 0.33 , which is solved to become  672.83 . At 
last, the task of the assignment operator can be completed by storing  672.83  in the variable 
named  result . Mission accomplished.  

Incidentally, many programmers use the expression  rhs  to refer to the code on the right hand 
side of an equals sign and  lhs  to refer to the code on the left hand side. 

The Power of Methods Returning Values 
 
Imagine that code with whatever crazy math is used to generate the random numbers in 
place of the simple call to  Math.random()  (like the linear congruential method - it’s a 
thing). It might end up taking multiple lines and would certainly look more complex and 
take longer for a reader to decipher. 

So, even though you can make and use methods with a  void  return type, you should 
find that most methods complete a task and  return some result . That way they can be 
used to complete some larger task. This is a great way to break complex problems into 
sets of smaller problems that are each more simple and easier to solve. Standard 
libraries of code like the  Math  class, that provide commonly needed methods like 
random()  do this for you, but you will want to make your own methods, too. 

Many companies have their own libraries that they design and use for their software. 
Individual programmers will use the company-wide libraries, and oftentimes write their 
own libraries for other programmers in the company to use.  

 

Passing Arguments to Parameters 
For our next  Math  method, let’s look at  floor() . It returns the largest number that is less than 
or equal to the number given. It’s a bit like truncating a double to an  int , but the result is still a 
double . The method header for  floor()  in the documentation looks like this: 
 

public   static   double  floor ( double  a) 
 

 
 
 
JAVA: An Open Approach to No Objects Page 149 



Look at that conspicuous “ double  a ” between the parenthesis. That area holds a  parameter 
list , where several variables, called  parameters , can be assigned values from the outside. 
 
How do we pass values to the parameters in a method? When you call the method, you simply 
list any values in the same order as the parameters, and the values will get assigned to the 
corresponding parameters. You’ve been doing this for awhile now with  println() , for instance, 
when you pass it  String  literals. 
 

Math . floor ( 55.95 );   //pass the argument 55.95 to a parameter in floor 
 
When you call a method, whatever elements you type between the parentheses are called 
arguments. In the example above,  55.95  is the argument. So, the argument,  55.95 , is passed 
to  floor()  and is assigned to the parameter,  double a , written into the  floor()  header where 
it's declared. 
 

Method Call and Method Declaration 
 
Be careful to make a distinction between a method  call,  and a method declaration .  The 
call  passes the arguments, the  declaration  has parameters to catch the argument 
values, and then, the body of the method  declaration  runs. In short, a  call  passes 
arguments to the parameters in the method  declaration  so it can run. 
 
Add to that, the ability for some methods to return a value back to where it was called 
and you have the process of calling a method in a nutshell. 

 
You won’t see any results from that last line of code, by the way. The returned value from 
floor()  goes nowhere! It’s a very common mistake to invoke a method but not store the 
result anywhere. Let’s fix that: 
 

double flooredNumber = Math . floor ( 55.95 ); 

//pass 55.95, get 55.0 returned 

 

System . out . println ( flooredNumber ); 
 
So, now we see the method get some results. A value of  55  is returned and then our 
statement sets  flooredNumber  to  55.0 . It might be obvious what  floor()  is even good 
for, though. 

 

Round A Number 
 
Note that  floor()  doesn’t round by itself, but we can add a touch of math to get a 
rounded result. Since a low number like 55.001 all the way up to a high number like 

 
 
 
JAVA: An Open Approach to No Objects Page 150 



55.9999 will give floor a 55, how can we get it to round?  

When rounding to the nearest one, a value of 5 in the tenths digit or above means round 
up, right? What if we just added 0.5 to the number? Then 55.001 would be 55.501 and 
floor()  would still return 55. That same 0.5 added to 55.999, though, would give us 
56.499. Send that to  floor()  and you’ll get 56. That’s what we want! 

Okay, so let’s round a number using  floor() . 

double  roundedNumber  =   Math . floor ( 55.95   +   0.5 );   // 56! 

System . out . println ( "Rounded number: "   +  roundedNumber ); 
 
That seems to work! Notice that in place of a single value, we can use an expression as 
an argument to a method. The statement doesn’t send the whole expression  55.95 + 
0.5  to  floor() . Instead, it solves the expression first. So, in this case, it sends  56.45  as 
the argument. 

You have been doing this for awhile with  println() , by the way. Just look at the output 
statement above. The  String  literal,  "Rounded number: "  is added to the variable, 
roundedNumber , before it is sent as a new  String  to  println() . 

Can we pass variables to methods when we call them? Not exactly. Technically, a call 
with a variable as an argument will pass the value that is in the variable to the method. 
Let’s expand our  floor()  example a bit. 

 

double  original  =   123.2; 

original  =  original  +   0.5 ; 

// actually not good practice - original is misnamed now! 

double  roundedNumber  =   Math . floor ( original ); 

// 123.0 

System . out . println ( "Rounded number: "   +  roundedNumber ); 

 

Focusing on  Math . floor ( original ) , the variable named  original  is the argument, 
but the variable itself doesn’t get passed to  floor() . Instead, the value it stores,  128.2 , 
is passed. Some programming languages have multiple passing types, like passing by 
reference, but Java always passes by value. 

 

 
 
 
JAVA: An Open Approach to No Objects Page 151 



What about  Math.round() ? 

You might have noticed  round()  in the list of  Math  methods and wonder why we didn’t 
just use that instead of the example using  floor() .  
 
If you look closely at the headers for the different versions of  round()  you’ll see they use 
the data types  float  and  long . These work fine if you are familiar with how to write 
float  literals — tack an  f  on the end — or want to pass a  double , and typecast the 
resulting  long  value into an  int . This seemed a distraction from the main points, but it’s 
a fine method. Try it out! 

 

Multiple Parameters 

Below you’ll find a list of some useful  Math  methods to look into, but first let’s look at an 
example of calling a method with multiple parameters. Here’s the header for  min() . 

public   static   double  min ( double  a, double b) 
 
We can see that it has a return type of  double , so we’ll get a value back if we call it. We 
can also see that it has two parameters that are both  double s. Besides that, the 
documentation describes that it returns the lesser value of the two that were passed to it. 
That’s all we need to know to use it! Let’s setup a program to let a user control the 
volume knob on a certain, infamous guitar amplifier.  

Scanner  scanner  =   new   Scanner ( System . in ); 

 

double  volumeTarget  =  scanner . nextDouble (); 

 

double  actualVolume  =   Math . min ( 11 ,  volumeTarget ); 

//limits actualVolume to 11! 

 

System . out . println ( "Volume set to "   +  actualVolume ); 
 
The value,  11 , is sent to  min() ’s a parameter, and the value in  volumeTarget , whatever 
the user entered, is sent to  min() ’s  b  parameter. It sends back whichever is lower so 
that any user trying to set the volume above  11  won’t be able to do so. However, any 
value below  11  that is entered by the user will be assigned to  actualVolume  just fine. 
You could solve this with an  if  statement but this is a nice, short and simple solution. 

The order of the arguments doesn’t matter when calling  min , but many methods have 
very specific purposes for each parameter. For instance,  pow() . 

public   static   double  pow ( double  a, double b) 
 

 
 
 
JAVA: An Open Approach to No Objects Page 152 



Importantly, the specification states that  pow()  “Returns the value of the first argument 
raised to the power of the second argument.” In the example below, notice how the order 
of the arguments truly does matter when using  pow() . 

System . out . println ( pow ( 10 ,   2 ));   //outputs 100 

System . out . println ( pow ( 2 ,   10 ));   //outputs 1024 

 
It would be a nicer method if the parameters had more meaningful names. Maybe ‘base’ 
and ‘exponent’, for instance. Wouldn’t that make it easier to understand? Keep that in 
mind when you make your own methods! 

Before we do that, here’s a list of some  Math  methods you will want to study (but be sure 
to check out the Relevant API in the appendix, as well): 

● abs()   for finding an absolute value. 

● sin() ,  cos() ,  tan(),   asin(),   acos(),   atan()  for dealing with angles - in 
radians, be careful! 

● toDegrees()  and  toRadians()  for converting between degrees and radians 
(see above). 

● ceil(),   floor(),  and  round()  for rounding numbers. 

● log()  for finding logarithms. 

● min()   and  max()   for choosing compared values. 

● random()   for getting random numbers. 

● power()  for calculating exponents. 

You can find details at Oracle’s Math documentation web page: 
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html  

Are Classes the Real Superheroes?  

While the methods-are-heroes analogy may help you imagine calling heroes into the fray 
to use their skills, a method should really be focused on one task. This is why the hero 
method examples had such a narrow focus -  diceRollerGuy()  is pretty limited, after all.  
 
Most great superheroes in fiction are more nuanced and able to handle many tasks. The 
Math  class has many methods that all revolve around arithmetic. So, you could think of 
Math  as “TheMathmetician” and all the various methods as “TheMathematician's” 
superpowers. 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 153 

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html


The idea of a class being a type of object and its methods revolving around that object’s 
data will be much more important when you define more complex classes. For now, you 
can use classes as simple collections of related methods. 

 

Check Yourself 

 
 

1. What must be present in the header for  getStuff()  for the following statement to 
execute? 

 

int  numberOfThings  =  getStuff (); 

 

 

 

2. In the code below, what term is used to describe the two items in parentheses? 
 

doIncredibleTricks ( 55 ,  userNumber ); 
 

 

 

3. In the code below, what term is used to describe the two items in parentheses? 
 

public   static   void  doIncredibleTricks ( int  count ,   double  num )   { 

   //logic omitted... 

} 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 154 



§6.4 Defining Your Own Methods  
When it comes to working with methods, there is only one more rewarding experience than 
finding a method you can use that is already written: writing your own awesome methods.  

You  will  need to declare your own methods. Why? Well, if you are writing something you are 
passionate about, chances are it includes something unique! If someone is  paying  you to write a 
commercial program, there better be something to make it stand out so customers will choose it 
over competing software.  

There is plenty of available code out there to support all kinds of projects, and you will want to 
take advantage of it when appropriate, but the secret goodness that YOU add to make it great 
and make it yours will need to live in methods. Let’s get to it — but hey, if you haven’t read the 
above sections, you really need to! 

When to Write a Method 
The first step is to decide when you want to add a method. Often, you will be writing code and 
think of a task to perform and decide that it belongs in a method. Why? Maybe you think you’ll 
reuse it. Maybe you just think it will help keep the code more readable and clear. 

The purpose of our example program below is to get a movie’s star rating from the user, who is 
probably a reviewer, and then display one of three possible summaries of what that star rating 
means, so they can copy and paste it into their review article. Here’s the code, so far: 
 

import  java . util . Scanner ; 
 
public   class   StarRating   { 
 
   public   static   void  main ( String []  args )  { 
 
     Scanner  scanner  =   new   Scanner ( System . in ); 
     int  starRating  =  scanner . nextInt (); 
  
     // output a summary of what the rating means 
 
   } 
} 

 
So, you are about to write some  if  statements and it dawns on you: there are several parts of a 
larger program that may need these rating summaries. Maybe a web page that shows a chart of 
what the star ratings mean, and then, in some database views that aren’t in the original article, it 
will also be shown. You decide to move the code that outputs the summary to its own method 

 
 
 
JAVA: An Open Approach to No Objects Page 155 



because it will be reusable.  

This method will do  one  thing, print a message to standard output based on a star rating that is 
sent to it. Sometimes it helps to start by writing the method call first to imagine how you want to 
use it. Note that as we add on to this code, we’ll be putting anything we add in bold so that it 
sticks out (just like in Lego instructions!). 
 

import  java . util . Scanner ; 
 
public   class   StarRating   { 
 
   public   static   void  main ( String []  args )   { 
     Scanner  scanner  =   new   Scanner ( System . in ); 
     int  starRating  =  scanner . nextInt (); 
  
     // output a summary of what the rating means 
     // SummarizeRating(starRating); 
 
   } 
} 

 

Writing a Method Header 
Now, we can analyze the call to the method and decide how the header will be written.  

The header of a method declaration — sometimes called a method definition — needs 
modifiers. So far, we only know about  public  and  static , so we’ll start with those: 

public   static 

//modifiers  
 
Next, we need to add our return type. How do we know what return type to include? Look at 
how you are calling the method. Is the call part of a calculation? Is the call being assigned to a 
variable? Is the call being used as an argument in another method call? Answering yes to any of 
those questions would mean a value needs to be returned by the method. In this case, we can 
answer no to all of the questions, so we have nothing to return. To show that there is no return 
value and therefore no data type to return, we type  void  - just like  main()  uses. 

public   static   void 

//            return type 
  
Next comes the identifier, the name. We already thought of that when we typed the call. 

public   static   void   SummarizeRating 

//                 indentifier 

 
 
 
JAVA: An Open Approach to No Objects Page 156 



  
Now, we need parentheses and the parameter list that goes inside. To know what we need, look 
for any arguments sent in the method call. If there are no arguments we can leave the 
parentheses empty.  

However, we placed  starRating  in the parenthesis as an argument, so we  will  need a 
parameter to catch its value. We can name it whatever we want - something meaningful is best - 
but the data type  needs  to match the data type that is sent in the argument. Since  starRating 
is an  int , we will use that data type for the parameter. 

public   static   void   SummarizeRating ( int  rating ) 

//                                parameter list 

 

The method header is complete, but we should add the opening and closing braces to set up 
the beginning and end of the method body. If there was a return type that wasn’t  void , we’d also 
need to add a  return  statement. More on that later. 

Now, we have a complete method declaration for a method that does... nothing. After all, the 
body is empty. We made a method  stub  for  summarizeRating() . We should uncomment the 
method call and check for errors. This way we know if we have our method header and our call 
matching, even before we work on the body of the method. 

 
import  java . util . Scanner; 
 
public   class   StarRating  { 
 
   public   static   void  main ( String []  args )  { 
     Scanner  scanner  =   new   Scanner ( System . in ); 
     int  starRating  =  scanner . nextInt (); 
     //output a summary of what the rating means 
    summarizeRating ( starRating ); 
  } 
 
   public   static   void   summarizeRating ( int  rating )  { 
     //needs filling 
  } 
} 

 
Hopefully when we execute this program, it will compile and run. And do nothing when 
summarizeRating()  is called. If everything works, it’s time to write the body of the method! 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 157 



Writing a Method Body 
 
As mentioned earlier, one benefit of adding methods to complex programs is that it breaks a 
larger problem into smaller problems. One way you may feel that advantage is when you start 
writing the body of a method. You really should - almost - forget the rest of the program. 
Everything you need is in the header of the method. If it doesn’t tell you everything you need, 
you may have formed it incorrectly. Let’s look at method declaration, alone. 

public   static   void  summarizeRating ( int  rating )  { 
 
} 

 
You may think you need to know more about  starRating() , but why? We have our parameter, 
rating , right there in the header. A parameter is like a variable declaration that has been 
secretly assigned a value when the method begins. It  always  gets a value. This is true, because 
nobody can call this method into action without sending the right kind of data as an argument. 
We have the luxury of letting variables from other methods slip our minds. 

We have only this one variable,  rating , to worry about. We also know from the return type 
being  void , that there is nothing to return. We need to know the purpose of the method, of 
course, as most method names don’t give the whole story. This method’s identifier is meaningful 
enough that it does help, at least. 

Let’s add the code to summarize the rating to our method body. Again, just focus on this method 
alone. 

public   static   void  summarizeRating ( int  rating )  { 
   if   ( rating  ==   1 )  { 
     System . out . println ( "Watch some cat videos, instead." ); 
  }  else   if   ( rating  ==   2 )  { 
     System . out . println ( "Middle of the road." ); 
  }  else   if   ( rating  ==   3 )  { 
     System . out . println ( "See this now!" ); 
  }  else  { 
     System . out . println ( "Invalid" ); 
  } 
} 

 
 
Great! Now, we can run this program. So maybe you are thinking, “what about input?”, or, “how 
can this work when  rating  isn’t assigned a value?”. This is why I said you should  almost  forget 
the rest of the program. This method does the one action we intended and only that action. That 
is how it should be. The  main()  method takes care of input and calling this method. It  will  run. 

 

 
 
 
JAVA: An Open Approach to No Objects Page 158 



Writing Return Statements 

The methods in the  Math  class all return values. Let’s write our own version of one we looked at, 
earlier:  min() .  

Here’s the code we’ll use to test this new version of  min().  Notice that in this code,  min()  is 
used in an assignment statement and it is also used as the argument in a call to  println().  If 
min()  didn’t return a value after it was called, there would be no way for these statements to 
execute! 

public   class   CustomMin   { 
   public   static   void  main ( String []  args )   { 
 
     int  lowNum  =  min ( 5 ,   2 ); 
     System . out . println ( lowNum ); 
     System . out . println ( min ( 2 ,   5 )); 
 
   } 
} 

 
For the header, let’s just copy how  min()  was written in the  Math  documentation 

public   static   double  min ( double  first, double second) 
 
Remember that the purpose of  min()  is to return the lower of two values sent to it. This is why 
there are two parameters. I decided on  first  and  second , instead of  a  and  b , because it has a 
bit more meaning, maybe, but mostly to stamp this method as our version. Incidentally, there 
wouldn’t be a problem for the computer to distinguish between ours and the one that belongs to 
Math  because we aren’t calling it with using the  Math  class and the dot operator, and we are 
declaring it inside the  CustomMin  class, not  Math . 
 
Here’s one way to declare  min() : 
 

public   static   int  min ( int  first ,   int  second )   { 
 

   int  lowerNumber ; 
 

   if   ( first  <  second )   { 
    lowerNumber  =  first ; 
   }   else   { 
    lowerNumber  =  second ; 
   } 
 
   return  lowerNumber ; 

 
} 

 
 
 
JAVA: An Open Approach to No Objects Page 159 



 
Using a  return  statement is something new we need to pay attention to. Without a  return 
statement that can be reached, the Java compiler will report it as a syntax error. It knows you 
intend  to return a value by your non- void  return type, so leaving the possibility of no return 
statement is impossible to resolve. 

Also, whatever value is returned needs to match the data type listed as the return type. Notice 
we are returning the value in  lowerNumber  which was declared as an  int , matching the return 
type exactly. 

In the example above, we follow some logic to copy the smaller value into  lowerNumber , and 
then wait until the end to return the value in  lowerNumber . Return statements don’t have to 
come at the end of a method, though. As soon as a  return  statement is reached, no matter 
where in the code it is placed, it will cause the method to stop running and return the value to 
where the method was called from. 

We can use this knowledge to rewrite a shorter solution for our method body, and even 
eliminate the need for  lowerNumber , altogether. 

public   static   int  min (   int  first ,   int  second  )   { 
 
   if   ( first  <  second )   { 
     return  first ; 
   } 
 
   return  second ; 
 
} 

 
Short and sweet, right? Notice how we could have used an  else  to enclose that last return, and 
might have been inclined to do so from writing  if  statements in the past. However, there is no 
reason to. If  first  is less than  second  and the  if  statement’s first block of code is executed, 
the  return  statement immediately ends, sending the value of  first  back to where the method 
was called from. That means the second  return  won’t be reached! If  first  isn’t less than 
second , the block is skipped, and the next statement returns  second , instead. 
 
If you’ve learned about the conditional operator (  ? :  ), you could write this method body in one 
return statement! 
 
One more example. Here is a complete method declaration for a method called  add . 
 

public   static   int  add ( int  a ,   int  b )   { 
   return  a  +  b; 
} 

 

 
 
 
JAVA: An Open Approach to No Objects Page 160 



Yes, this is a silly method. You would be better off just using the addition operator to add 
integers together,  but  it does show how you can use an expression in a  return  statement. As 
you may expect, the expression will be calculated and the resulting value will be returned to 
where  add()  was called. 

Go Big 

With the ability to write your own methods, you can tackle much larger and complex programs. 
You can naturally break the program into smaller methods with a single purpose, focus on the 
algorithm for just one method at a time, and look for opportunities to reuse the methods you’ve 
written. 

 

Check Yourself 

 
 

1. Write code to call the method with the header shown below. 
 

public   static   void  eatVeggies ( int  veggieCount ) 

 

 

2. Write code to output what a call to the method gives back when declared with the header 
shown below. 

 

public   static   double  getPortions  ( double  total ) 

 

 

 

3. Write a method header (only) that would work for the method call below. 
 
rotateAndDivide ( 123.2 ,  num  *   1.2 ); 

 

 

 

4. Write a method header (only) that would work for the method call below. 

int  beakerMeasurement  =  getLiquid ( 12 ,   54.2 );  

 
 
 
JAVA: An Open Approach to No Objects Page 161 



LOOPS 
 
 

“You should only use ‘while - true’ loops when you 
don’t know when the loop is going to end … 

 
… but you should always know when the loop is 

going to end.” 
 

- Dr. Kotok - 

  

 
 
 
JAVA: An Open Approach to No Objects Page 162 



§7.1 Control Structures - Loops 
You know the  if  statement, a control structure that can have the program choose to execute a 
block of code, or skip it. There are several other control structures that will manipulate the flow 
of code and repeat sections of code, over and over again. The repetition of a block of code is 
called an  iteration . 

This chapter will start by studying the  while  statement heavily and then introduce the other 
two main types of looping statements. But for now, think of a loop (in terms of program flow) as 
a few lines of code that get executed until a condition is met.  

In a non-computer science realm, baking a cake is a good example of implementing loops. 
Think of mixing the batter. As you mix, you might stick your finger in the batter and see if it 
tastes good. If it isn’t sweet enough, then you would add sugar. And then dip your finger in and 
taste it again. If it isn’t sweet enough, more sugar. Then taste it. Then add more sugar. Then 
taste it. When you taste it, and it is sweet enough, then move onto the next phase. 

 

A flowchart for baking a cake 

 

 
 
 
JAVA: An Open Approach to No Objects Page 163 



§7.2 The  while   statement 
The best iteration statement to start with is the  while  statement because structurally it is the 
same as the  if  statement: 

while  (   < boolean  expression >   )   { 

   //BODY of the loop  

   //<statements to repeat while true> 

} 
 

Just like the  if  statement, the code within the body will execute if the conditional, the boolean 
expression, evaluates to be  true . However, unlike the  if  statement, after the body of a  while 
statement runs, it goes back to the condition and test it again. Depending on the result, the 
program may repeat the code or move on to the lines of code following the  while  loop. The 
following example will display a countdown from 10 to 1, and print some text:  

 

A flowchart for counting down from 10 to 1 

//example: display a countdown 

int  count  =   10; 

while  ( count  >   0 )   { 

   System . out . println ( count  +   "!" ); 

  count --;    //same as: count = count - 1; 

} 

System . out . println ( "BLAST OFF!!!!" ); 

 
 
 
JAVA: An Open Approach to No Objects Page 164 



OUTPUT: 
 

10! 
9! 
8! 
7! 
6! 
5! 
4! 
3! 
2! 
1! 
BLAST OFF!!!! 

 

To better understand the order of execution of the program, let’s break it down a little and walk 
through the program line by line (code is numbered to help with this):  

1    //example: display a count-down 

2    int  count  =   10; 

3     while  ( count  >   0 )   { 

4      System . out . println (  count  +   "!" ); 

5     count-- ;    //same as: count = count - 1; 

6   } 

7 

8    System . out . println ( "BLAST OFF!!!!" ); 

Here’s what’s happening: 

● The  while  statement starts on line 3, and will test the condition ( count > 0 ) 

● The  count  is initialized to  10 , so this expression evaluates to  true . Because the 
boolean expression is  true , the body of the loop will be executed, starting with line 4 

● The  count  is printed, and then the code in line 5 decreases the value of  count  by one 
(so now it is  9 )  

● Line 6 ends the body of the  while  loop, so the control jumps back to line 3 and tests the 
conditional statement again 

● The value of  count  is now  9 , so the expression evaluates to  true  again and will run all 
the code in the body of the loop 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 165 



● The flow of execution runs in this pattern until the value of  count  reaches  0  on line 5. 
After the value of  count  decreases to 0, the test on line 3 will evaluate to  false , and 
the body of the  while  loop is skipped, so control goes to line 7.  

● Finally, the last line gets executed and prints “BLAST OFF!!!!” 

In summary, a  while  loop operates like this: 

1. Evaluate the boolean expression (conditional) to be  true  or  false 
2. If  true , execute the body, and go back to step 1 
3. If  false , skip the body and go to the next statement after the loop 

 
 

  

 
 
 
JAVA: An Open Approach to No Objects Page 166 



§7.3 The LCV 
The variable that controls the loop is appropriately called the  Loop Control Variable (LCV) . 
When you have an error working with iterations, it is likely an issue with the LCV.  There are 
three things that need to happen for the loop to run correctly: 
 

1. Initialize the LCV before the loop starts 
2. The conditional uses the LCV (this is called the terminal expression) 
3. Update/change the LCV in the body of the loop 

 
The following examples will run forever because there is an issue with how the LCV is used, 
resulting in an  infinite loop . An infinite loop occurs when the code in a loop is executed but the 
loop is poorly designed and there is no way for the conditional statement to evaluate to  false , 
so the loop iterates forever.  

Examples of Infinite Loops 
 
In this case, the terminal expression does not use the LCV so the loop will continue to 
countdown forever, displaying negative numbers: 
 

//example: display a countdown 

int  count  =   10 ; 

int  value  =   10 ; 

 

while  ( value  >   0 )   { 

   System . out . println (  count  +   "!" ); 

  count-- ;    //same as: count = count - 1; 

} 

 

System . out . println ( "BLAST OFF!!!!" ); 

 
 
 
 
 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 167 



OUTPUT: 

 

10! 
9! 
8! 
7! 
6! 
5! 
4! 
3! 
2! 
1! 
0! 
-1! 
-2! 
... 

 
In this example, the body does not update or change the LCV so the program will print 
10 over and over and over and over… 

 
//example: display a countdown 

int  count  =   10 ; 

 

while  ( count  >   0 )   { 

   System . out . println (  count  +   "!" ); 

} 

System . out . println ( "BLAST OFF!!!!" ); 
 

OUTPUT: 

 

10! 
10! 
10! 
10! 
10! 
10! 
10! 
10! 
10! 
10! 
10! 
10! 
10! 
... 

 
 
 
JAVA: An Open Approach to No Objects Page 168 



 
 
Don’t panic! Although this sounds catastrophic, it isn’t that bad. Every programmer creates 
infinite loops every now and then. It’s easy to fix - just terminate the program from running. 
Different IDEs have different mechanisms for this, so make sure you know how to end a 
process. 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 169 



§7.4 Common  while  loops 
There are common algorithms or tasks done with the  while  statement: 
 

1. Running instructions some number of times 
2. Accumulating 
3. Counting  
4. Search (a  sentinel  controlled loop) 

Running instructions some number of times 
The first countdown block of code is an example of the “running a certain number of times” 
algorithm. Note that you don’t need to know  precisely  how many times the instructions will be 
run, just that they will be run a finite number of times.  

Unlike the countdown example, many times you will start with a LCV initialized to zero.  In the 
conditional, you will check to see that the LCV is less than the number of times you want to run 
it. The last step in the body of the loop will increase the LCV by 1. The following example will run 
5 times, and display random six-sided dice rolls. 

//example: running x times 

int  count  =   0 ; 

int  numOfTimesToRoll  =   5 ; 

 

while  ( count  <  numOfTimesToRoll )   { 

   int  value  =   ( int )( Math . random ()* 6 )   +   1 

   System . out . println ( value ); 

} 

There are several variation of this style of loop. For example, you may want to display the 
values and have them numbered. To do this, you can start  count  with a value of  1 , and then use 
check to see that count is less than or equal to  numOfTimesToRoll  in the conditional: 

//example: running x times 

int  count  =   1 ; 

int  numOfTimesToRoll  =   5 ; 

 

while   ( count  <=  numOfTimesToRoll )   { 

   int  value  =   ( int )   ( Math . random ()* 6 )   +   1 ; 

   System . out . println (  count  +   ". "   +  value  ); 

  count ++;   // same as count = count + 1; 

} 

 
 
 
JAVA: An Open Approach to No Objects Page 170 



Accumulating 
A popular variation of the loop running a count number of times, is accumulating, or adding to a 
running sum. To do this, you will create a sum variable before the loop starts and keep adding to 
it in the loop. The following example will get five values from the user and display the average. 
The key part of this is keeping track of the running sum (accumulating the scores). 
 

//example: accumulating 

int  count  =   0 ; 

int  numOfScores  =   5 ; 

int  sum  =   0 ;   //key to accumulating 

 

while   ( count  <  numOfScores )   { 

   System . out . print ( "Score: " ); 

   int  score  =  input . nextInt (); 

  sum  =  sum  +  score ;    //could have used: sum += score; 

  count ++;   //same as count = count + 1; 

} 

 

double  avg  =   ( double )  sum  /  numOfScores ; 

double  roundedAvg  =   Math . round  ( avg  *   10 )   /   10.0 ; 

System . out . println ( "Average = "   +  roundedAvg ); 

 

Counting 
Another common use is a counting loop. For example, you would like to count the number of 
grades above a 90 you have. The key to this algorithm is the nested  if  statement used within 
the  while  loop. Naming of the variables is important to help keep track of what variable is 
holding what value. The algorithm is: 
 

1. Loop through your 16 grades 
2. If any grade is above a 90, count it.  
3. Display the count at the end. 

 

 
 
 
JAVA: An Open Approach to No Objects Page 171 



 

A flowchart for the grade counting algorithm 

 
//example: counting 

int  count  =   0 ; 

int  numOfGrades  =   16 ; 

int  countOfGradesAbove90 =   0 ;   //key to counting 

 

while   (count  <  numOfGrades )   { 

   System . out . print ( "Score: " ); 

   int  score  =  input . nextInt (); 

   if  ( score  >   90 ){ 

     ++ countOfGradesAbove90 ; 

  } 

  

   ++ count ; 

} 

 

System . out . println ( "You have "   +  countOfGradesAbove90  +   " grades above 90!" ); 

 
 
 
JAVA: An Open Approach to No Objects Page 172 



§7.5 The  for  Loop 
Recall from section 7.3, there are three things that need to happen for the loop to run correctly: 
 

1. Initialize the LCV before the loop starts, 
2. The conditional uses the LCV (this is called the terminal expression) 
3. Update/change the LCV in the body of the loop. 

 
There is a control structure that does just that in one declaration.  The  for  statement. 
 

for   ( <initialization statement>; <conditional>; <update statement>) { 

   //Code to loop 

} 

 
In terms of execution the following order runs when the compiler enters the  for  statement: 
 

1. Run the initialization statement 
2. Evaluate the conditional to be  true  or  false 

a. If  false , skip the body of the  for  loop, (DONE - do not do steps 3,4) 
b. If  true , enter the body of the  for  loop, and run it. 

3. Run the update statement. 
4. Repeat (goto step 2)  

Example 1: Output the integers between 1 and 10 
 

// output the integers between 1 and 10, inclusive 

for   ( int  i  =   0 ;  i  <=   10 ;  i ++)   { 

   System . out . print ( i  +   "   "); 

} 
 

OUTPUT: 

 
1 2 3 4 5 6 7 8 9 10 

 
Note that although the last number to be output is  10 , the actual value of  i  is  11 . This is 
oftentimes confusing for people, but it makes sense when you think about it. The variable  i 
changes with each iteration, and the loop continues to run while  i  is less than or equal to  10 . So 
for the loop to end, the value of  i  must exceed  10 , and since it goes up by 1 each iteration, the 

 
 
 
JAVA: An Open Approach to No Objects Page 173 



last known value of  i  is  11 . 

Example 2: Output multiples of 5 
 

// Print the first 6 multiples of 5 

for   ( int  i  =   0 ;  i  <   6 ;  i ++)   { 

   System . out . print ( Math . pow ( 5 ,  i )   +   "   "); 

} 
 

OUTPUT: 

 
0 5 25 125 625 3125 

 
Note that in this case, the conditional specifies that  i < 6 , not  i <= 6 . That’s because we 
started at  0  and wanted six iterations. If we had used  i <= 6 , we would have output seven 
numbers.  

Example 3: Print a table for squares and cubes 
//print a table of perfect squares and cubes 

System . out . println ( "value\tsquared\tcubed" ); 

System . out . println ( "------------------------" ); 

 

for ( int  i  =   1 ;  i <= 10 ;  i ++){ 

   System . out . println ( i  + "\t\t"   +   ( i * i )   +   "\t\t"   +   ( i * i * i )   ); 

} 

 
OUTPUT: 

 
value squared cubed 
------------------------ 
1 1 1 
2 4 8 
3 9 27 
4 16 64 
5 25 125 
6 36 216 
7 49 343 
8 64 512 
9 81 729 
10 100 1000 

 
 
 
JAVA: An Open Approach to No Objects Page 174 



§7.6  The  do-while  loop 

The  while  and  for  statements are pretest loops; that is, they test the condition first and at the 
beginning of each pass through the loop. 

Java also provides a posttest loop: the  do-while  statement. This type of loop is useful when 
you need to run the body of the loop at least once. 

For example, we can use a  do-while  loop to keep reading input until it’s valid: 

Scanner   in   =   new   Scanner ( System . in ); 

boolean  okay ; 

 

do   { 

     System . out . print ( "Enter a number: " ); 

 

     if   ( in . hasNextDouble ())   { 

        okay  =   true ; 

     }   else   { 

        okay  =   false ; 

         String  word  =   in . next ();   //read in bogus input 

         System . err . println ( word  +   " is not a number" ); 

     } 

}   while   (! okay ); 

 

double  x  =   in . nextDouble (); 

 

Although this code looks complicated, it is essentially only three steps: 

1. Display a prompt 
2. Check the input; if invalid, display an error and start over 
3. Read the input 

The code uses a flag variable,  okay , to indicate whether we need to repeat the loop body. If 
hasNextDouble()  returns  false , we consume the invalid input by calling  next() . We then 
display an error message via  System.err . The loop terminates when  hasNextDouble()  returns 
true . 

It’s worth mentioning that  do-while  loops are rarely used, but they are a legitimate construct 
and you should acquaint yourself with them. There’s also a loop that we did not review here - 
the  for-each  loop. It is contingent on data structures like arrays, so we’ll examine the 
for-each  loop when we look at arrays. 

 
 
 
JAVA: An Open Approach to No Objects Page 175 



§ 7.7  break  and  continue 
Sometimes neither a pretest nor a posttest loop will provide exactly what you need. In the 
previous example, the “test” needed to happen in the middle of the loop. As a result, we used a 
flag variable and a nested  if-else  statement. 

A simpler way to solve this problem is to use a  break  statement (remember these from our 
discussion on  switch ?). When a program reaches a  break  statement, it immediately exits the 
current loop and cedes control back to the main program flow. 
 
In the following example, we build upon our model where we want to get a valid  double  from 
the user. If they enter a  double , the loop ends. If the input is not a  double , then an error 
message comes up and asks the user to enter a number (again): 
 

Scanner   in   =   new   Scanner ( System . in ); 

while   ( true )   { 

 

   System . out . print ( "Enter a number: " ); 

   if   ( in . hasNextDouble ())   { 

     break ; 

   } 

  

   String  word  =   in . next (); 

   System . err . println ( word  +   " is not a number" ); 

 

} 

 

double  x  =   in . nextDouble (); 

 

Since the conditional in the  while  loop will always evaluate to  true  (because it  literally  is  true ), 
the only hope this program has of not continuing forever is if the  break  command is 
encountered. Happily, the program is structured in such a way that a  break  will be executed 
whenever a valid  double  is entered. 
 
Using  true  as a conditional in a  while  loop is an idiom that means “loop forever”, or in this case 
“loop until you get to a  break  statement.” Most programmers try to avoid  while-true  loops 
because things can easily go awry when intentionally creating infinite loops, though some 
instances such as the above situation are rare exceptions.  

In addition to the  break  statement, which exits the loop, Java provides a  continue  statement 
that moves on to the next iteration. For example, the following code reads integers from the 

 
 
 
JAVA: An Open Approach to No Objects Page 176 



keyboard and computes a running total. The  continue  statement causes the program to skip 
over any negative values. 

Scanner   in   =   new   Scanner ( System . in ); 

int  x  =   - 1 ; 

int  sum  =   0 ; 

 

while   ( x  !=   0 )   { 

  x  =   in . nextInt (); 

   if   ( x  <=   0 )   { 

         continue ; 

     } 

     System . out . println ( "Adding "   +  x ); 

    sum  +=  x ; 

} 

Although  break  and  continue  statements give you more control of the loop execution, they can 
make code difficult to understand and debug. Use them sparingly. 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 177 



ARRAYS 

 
Q:  Why did the programmer quit their job? 

 
A:  Because they didn’t get arrays! 

 
- Programmer Folklore -  

 
 
 
JAVA: An Open Approach to No Objects Page 178 



§8.1 What is an Array? 
Congratulations! You’ve made it to your first data storage type! The world of data storage is a 
rabbit hole of theory, efficiency, and practicality. Arrays are the first stop on the tour of storage 
methods.  

You may be thinking to yourself, “Self, why would I need more ways to store data? I’ve been 
using variables for quite some time now.” The reality is that most meaningful programs require 
the storage of multiple data.  

Description of an array 
Consider software designed to keep track of attendance. Each student has between 30 and 45 
days of class in a typical semester. So for every student, there are 30 to 45 different variables. 
Perhaps the naming convention is  day01 ,  day02 ,  day03 , ... ,  day44 , and  day45 . This  could  get 
the job done, but it’s a little messy because any time we have to track 45 variables, we’re bound 
to make a mistake. And this is for just one student! In a class of 20 students, we would have to 
rethink our naming convention (and encumber many more variables). Now we are looking at 
something like  student01Day01 ,  student01Day02 ,  student01Day03 , …,  student01Day45 , 
then we have to have the next set of 45 variables:  student02Day01 ,  student02Day02 , 
student02Day03 , …,  student02Day45 . Then we pivot to  student03  and then  student04  and 
go all the way up to  student20Day45 . All in, we’re looking at 900 variables. And keeping track 
of those is not attenable.  

This is where  arrays  come in. They are one variable that can hold a lot of data! It’s easier to 
visualize an array if you think of a row of lockers or a row of mailboxes: 

 

Arrays in real life 

 

 
 
 
JAVA: An Open Approach to No Objects Page 179 



In this fashion, the entire construct of the 15 mailboxes is really one object - it’s a wooden plank 
nailed to a few wooden posts; but it’s really just one giant construction that holds mailboxes. 
That’s only one variable (in the words of the immortal Jack Black, “Dude! If you get the nachos 
stuck together, that’s one nacho!”)! It happens to be the case that this variable has room to hold 
15 mailboxes. Each mailbox can hold one (and only one) datum - in this case, a piece of mail -, 
so this entire oversized mailbox can hold 15 pieces of mail. 

Diagramming an array 
In the realm of Computer Science, we typically simplify the drawing of an array as just a whole 
bunch of adjacent boxes. In the example below, let’s call the array  student01 . Let’s imagine 
that each  element  in the array (that is, each box) is capable of holding one  boolean  value. 

 
We’ll be using this diagram a lot more, so get used to it! The word “ student01 ” is the name of 
the array, each element has a value in it (since this is an array of type  boolean , every value 
must be either  true  or  false  - in this case, it looks like the student was absent on the third day 
of class and the forty-third day of class), and the numbers on the bottom are the  index 
numbers  for the elements in the array. 

Remember that arrays are “zero-indexed”, so the first day of class in this example is really day 
0. That really is a little confusing, because the first  false  appears over index 2 but it’s really the 
third day of class - not the second. Likewise, the second  false  appears over the number 42 but 
is really the 43 rd  day of class. 

 
 
 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 180 



Check Yourself 

 
 

1. In your own words, furnish an example of a program that would need an array. 
 
 
 

2. Draw a diagram of an array named  grades  that can hold twelve values of type  double . 
Make up your own values for each element. 

 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 181 



§8.2 Basic Arrays 

Properties of arrays 
All arrays have a name, a length, and a data type. It turns out arrays are really good at storing 
multiple values, but not so good at storing data types of multiple kinds. They also aren’t very 
good at all for changing the number of things they can hold (that is, if an array is created and 
can store 10 items, then we can’t later change it to store 11 items - this one doesn’t go to 11. It 
stays at 10). 

It’s also worth noting that arrays are zero-indexed. That means that the first item is actually 
number 0. That’s peculiar, but get used to it because that’s how arrays roll. 

Declaring an array 
To create an array, we’ll need to declare and assign it. Interestingly, we don’t need to use the 
word “array”, we’ll just use the square brackets:  [ ] 

boolean[] student01 = new boolean[45]; 

This one line of code tells us a bunch of things: 

● boolean  tells us two things 
○ The  []  tells us that it actually  is  an array 
○ That this array can only hold data that are of type  boolean 

● student01  is the name of the array 
● new boolean[45]  tells us that the array can hold 45 items. 

 

 

You may see a declaration that puts the square brackets  after  the 
variable name: 
 

boolean student01[]; 
 
That’s perfectly cromulent, too - it works just as well. But from a 
readability standpoint, putting the brackets after the data type is 
preferred. 

 

 
 
 
JAVA: An Open Approach to No Objects Page 182 



 

This whole array thing  should  strike a chord with you: 
 

String[] args 
 
The parameter of the  main  method in any Java program is actually an 
array of  String s. It’s a little complicated, but essentially the input that 
we’ve been typing in and having the  Scanner  read is really an array of 
String s called  args . 

 

Hardcoding values in an array 
While most of the time the array will be loaded with values once the program is running, there 
are instances when an array is hardcoded with data. To do this, the declaration doesn’t change 
but the assignment (the right hand side) looks a bit different: 

String[] workWeek = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday"}; 

It isn’t rare to see an array pre-loaded with values, but it also isn’t super typical. You will know 
when you need to hardcode the values - don’t worry. 

Note that there are many different collections in Java - don’t get confused by the canonical 
classes in Java such as  ArrayLists ,  LinkedLists ,  Array ,  Arrays ,  ArrayType , 
ArrayReference , and many other classes. Don’t worry - you’ll get there one day. For now, just 
try to wrap your head around what an array is. 

 

Check Yourself 

 
 

1. Write a segment of code that declares an array named  arrMatey  that can hold eight 
elements of type  String . 
 
 

2. Write code that would hardcode the following data into the array of  double s called 
radioStations : 

88.5 91.3 95.1 103.5 105.7 

 
 
 
JAVA: An Open Approach to No Objects Page 183 



§8.3 Accessing Information in Arrays 
Knowing a bit about arrays is great in theory, but the practical way to handle arrays takes some 
technical skills. 

Populating an array 
For starters, let’s go over how to populate an array (that is, give it values - unless it is given 
values in the initial declaration like our previous example of the days of the week). By default, 
whenever an array is created, every element is filled with the default value that corresponds to 
the data type. For instance,  

int[] arrOfInts = new int[10]; 

Looks like this: 

 
 

. And an array of  double s called  arrOfDoubles  looks like this: 

double[] arrOfDoubles = new double[10]; 

 
 

An array of  boolean  declared and assigned as follows: 

boolean[] arrOfBooleans = new boolean[10]; 

 
 
 
JAVA: An Open Approach to No Objects Page 184 



Looks like this: 

 
And even though a  String  isn’t a primitive data type, an array of  String s can still be created. 
We may expect that each element would be the empty string, or  "" , but instead an array of any 
object - not just  String  - is full of   null s. 

String[] arrOfStrings = new String[10]; 

 
Knowing that an array is by default created with the default version of each type in every 
element, it is natural to want to put our own values in each element. Let’s look at the array we 
talked about a minute ago -  arrOfInts . There are two ways we could populate this array - we 
can have the code do it, or we can have the user do it. Let’s look at both. 

Populating an array with values [using code] 

In this example, let’s agree that we want to populate the array with powers of 2. So each 
element will be 2 raised to a power. The clearest way to do this is to actually hand code 
this: 

int []  arrOfInts  =   new  arrOfInts [ 10 ]; 

arrOfInts [ 0 ]   =   1 ; 

arrOfInts [ 1 ]   =   2 ; 

arrOfInts [ 2 ]   =   4 ; 

arrOfInts [ 3 ]   =   8 ; 

arrOfInts [ 4 ]   =   16 ; 

arrOfInts [ 5 ]   =   32 ; 

arrOfInts [ 6 ]   =   64 ; 

arrOfInts [ 7 ]   =   128 ; 

arrOfInts [ 8 ]   =   256 ; 

 
 
 
JAVA: An Open Approach to No Objects Page 185 



arrOfInts [ 9 ]   =   512; 

That’s kind of boring, but at least it’s clear. We can individually access any element just 
by putting the index number in the square brackets. By the way, we could have used a 
loop to automate this task - we’ll talk about iterating later on. 

Populating an array with values [from the user] 

Scanner  scanner  =   new   Scanner ( System . in ); 

 

System . out . print (" Enter  value  0 :   "); 

arrOfInts [ 0 ]   =  scanner . nextInt (); 

 

System . out . print (" Enter  value  1 :   "); 

arrOfInts [ 1 ]   =  scanner . nextInt (); 

 

System . out . print (" Enter  value  2 :   "); 

arrOfInts [ 2 ]   =  scanner . nextInt (); 

 

System . out . print (" Enter  value  3 :   "); 

arrOfInts [ 3 ]   =  scanner . nextInt (); 

 

System . out . print (" Enter  value  4 :   "); 

arrOfInts [ 4 ]   =  scanner . nextInt (); 

 

System . out . print (" Enter  value  5 :   "); 

arrOfInts [ 5 ]   =  scanner . nextInt (); 

 

System . out . print (" Enter  value  6 :   "); 

arrOfInts [ 6 ]   =  scanner . nextInt (); 

 

System . out . print (" Enter  value  7 :   "); 

arrOfInts [ 7 ]   =  scanner . nextInt (); 

 

System . out . print (" Enter  value  8 :   "); 

arrOfInts [ 8 ]   =  scanner . nextInt (); 

 

System . out . print (" Enter  value  9 :   "); 

arrOfInts [ 9 ]   =  scanner . nextInt (); 

Again, nothing super fascinating here, but it’s a good way to show how to  load  values 
from the user into specific slots in the array. 

 
 
 
JAVA: An Open Approach to No Objects Page 186 



Outputting values of an array 
Outputting the values of an array, however, isn’t as clear cut as you may think. For instance, in 
section 8.2 we talked about an array named  workWeek : 

String[] workWeek = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday"}; 

We could reasonably expect that a call to  System.out.println  with the  workWeek  as a 
parameter would output something like: 

HOPEFUL OUTPUT: 

 

Monday, Tuesday, Wednesday, Thursday, Friday 

 

But instead, we get: 

ACTUAL OUTPUT: 

 

java.lang.String;@6d06d69c 

 

As it turns out, any call to  System.out.print  with an object as the parameter will always output 
the address in memory that the object lives in (that is kind of the truth, but you won’t find out I’m 
lying until much later). 

So we have to output the values by referencing each element we want to output. Of course, this 
would be super easy with a loop (see section 8.4 if you can’t wait), but let’s do it item by item for 
the time being. Here are some basic lines of code that work well. Let’s use the following diagram 
for the array called  arr :  

 
 

And let’s look at a few different ways to retrieve datum from specific elements: 
 

 
 
 
JAVA: An Open Approach to No Objects Page 187 



System . out . println ( "The first element is "   +  arr [ 0 ]); 

// 155 

 

System . out . println ( "The second element is "   +  arr [ 1 ]); 

// 32 

 

int  length  =  arr . length ; 

System . out . println ( "The last element is "   +  arr [ length ]); 

// ERROR! Arr.length = 10, so we can't output arr[10] without 

// getting an ArrayIndexOutOfBoundsException 

 

int  length  =  arr . length - 1 ; 

System . out . println ( "The last element is "   +  arr [ length ]); 

// 765 

 

System . out . println ( "Pick a number between 0 and "   +   ( arr . length - 1 ));   // 5 

int  choice  =  scanner . nextInt (); 

 

// Make sure "choice" is a valid box in the array! 

if   ( choice  >=   0   &&  choice  <  arr . length )   {  

   System . out . println ( "The value in element "   +  choice  +   " is "   +  arr [ choice ]); 

} 

// 734 

The  .length  Property 

The astute reader will notice that there was a quick little call to  arr.length  in that code. Every 
array has a length - that is, the number of boxes in the array. We typically refer to that as the 
physical length . So  arr  has a physical length of 10 (even though the greatest index is 9). 
Therefore, any call to  arr.length  will always be the number of cells in the array. Likewise, a 
call to  arr[arr.length-1]  will always reference the last element in the array. 

I know that’s confusing! Why wouldn’t we be able to use  arr[arr.length]  to access the last 
element of an array? Well, it’s because of the value of  arr.length . If there are 10 elements, 
the value of  arr.length  is  10 . But the last element is really  arr[9] . So if we attempt to 
reference  arr[arr.length] , we are really referencing  arr[10] , which is a big no-no. 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 188 



Check Yourself 

 
1. Consider the following code: 

int []  arr  =   {- 2 ,   - 1 ,   0 ,   1 ,   2 }; 

int  element  =  arr [ 3 ]; 

What is the value of  element ?  
 

 

2. Consider the code segment below: 

int []  arr  =   { 2 ,   4 ,   6 ,   8 ,   10 }; 

System . out . println ( arr [ 1 ]   +  arr [ 4 ]); 

What is the output of the code? 
 

 
 

3. Consider the code segment below: 

int []  arr  =   { 1 ,   3 ,   5 ,   9 ,   11 }; 

System . out . println ( arr [ arr [ 1 ]]); 

What is the output of the code? 

 

 

4. Consider the code segment below: 

int []  arr  =   { 10 ,   20 ,   30 ,   40 ,   50 }; 

System . out . println ( arr [ 5 ]); 

This code causes an error. What is the error, and why is it caused? 

 
 
 
JAVA: An Open Approach to No Objects Page 189 



§8.4 Iterating Through Arrays 
With arrays comes the task of iterating through arrays. This means walking through every 
element of an array and checking the value stored in each one.  

Examples of iterating through arrays 

For demonstrative purposes, let’s look at three different times when it would be beneficial to 
iterate through an array: 

1. If you want to output every element of the array to the screen (or a file, if you’re super 
nerdy) 
 

2. If you want to sum all the numbers in an array - perhaps to find the average 
 

3. Searching an array for a specific value 
 

4. If you want to look at every element in the array and find the biggest (or smallest!) value. 

Typically this is done with a loop that starts at 0 and goes until the length of the array. It may 
seem hard to believe now, but there will be many times when you don’t know the length of the 
array so you’ll have to use the  .length  attribute. Don’t worry - hopefully after the third example, 
this will make sense. 

Outputting an array 

Let’s agree that we have an array named  arr , and it holds a bunch of  String s. Actually, 
it doesn’t really matter what  arr  holds because this code segment will work for any 
array. It also doesn’t matter if we know how many elements are in  arr  - the code will  still 
work even if the length is not known. 
 

for   ( int  i  =   0 ;  i  <  arr . length ;  i ++)   { 

     System . out . print ( arr [ i ]   +   " " ); 

} 

 

System . out . println (); 

 
The  for  statement almost never changes - the loop starts at  0  and goes to  arr.length 
(or  whateverTheNameOfTheArrayIs.length ). Note that there’s a 
System.out.println()  command after the loop iterates - this is just to add a new line 

 
 
 
JAVA: An Open Approach to No Objects Page 190 



so that if the program had more output, it wouldn’t be on the same line as the values we 
just output. 

Summing the array 

While we most likely won’t write too many programs that add all the values in an array, 
summing them up is a valuable lesson while learning how to step through every element 
in an array.  

Let’s think about this - we need to walk through an array (that’s what we call it when we 
traverse  every single element in an array), look at the value stored in each element of 
the array, and then keep a running total.  

So let’s imagine we have an array called  arrayOfNumbers , and it holds a bunch of 
double s. 
 

double []  arrayOfNumbers  =   new   double [ 10 ]; 

// <code to populate each cell of the array with a double> 

// Let’s not code this now - let’s assume that it has already  

// been populated with values somehow 

// 

// We need a variable to keep track of the running total. 

 

double  total  =   0 ; 

// Now that we have an array with values in it and a variable to 

// keep track of the total, let's use a loop to walk through the 

// array 

 

for   ( int  i  =   0 ;  i  <  arrayOfNumbers . length ;  i ++)   { 

   // We need to peek into the cell and add the value of that  

  // element to the   running total - that's "total" 

 

  total  +=  arrayOfNumbers [ i ]; 

 

} 

 

// By the time we get to the end, "total" should be the sum of  

// all the numbers   in the array. Holy cow! That wasn't so bad! 

 
So the value of  total  is actually the sum of all the numbers in the array. We’ve done our 
job! 

 
 
 
JAVA: An Open Approach to No Objects Page 191 



But wait - there’s more! It’s super easy right now to compute the average of all those numbers. 
We just have to divide the sum by the number of terms: 
 

System . out . println ( "The average is: "   +   ( total / arrayOfNumbers . length )); 

You may be thinking that dividing by  arrayOfNumbers.length  isn’t the proper number 
to divide by because it is off by one. But it  is  the right value - remember that 
arrayOfNumbers.length  refers to the physical length of the array; how many elements 
are actually stored in there. 

Searching an array for a specific value 

This is one of the most popular things to do with arrays and is worth investment in 
understanding it thoroughly. We can think of it as a giant game of Go Fish - we have a 
whole bunch of cards in our hand, someone asks us for a specific one, we look at each 
card, and either find it or tell our opponent to go fish. Let’s imagine we have an array, 
called  arr , and it contains many items (for simplicity, let’s say it has 100 items). Maybe 
we know that  arr  holds a bunch of  int s, and we are curious about if one specific one, 
say 33, is in the array. 

Well, first we’d have to start at the first element and then look to see if the item in index 0 
is the one we are looking for. If it is, great! We can stop looking. But if the first element is 
not 33, we need to move to the second element (and again look to see if the item in it is 
33). If we don’t find a 33, we move on to the next. And the next. And either we stop when 
we find it, or we get to the end and realize we haven’t found 33, so it must not be in the 
array. Let’s see what that looks like: 

 

// Declare and assign the array 

int []  arr  =   new   int [ 100 ]; 

 

// Randomly populate 'arr' - is 33 one of those numbers? Who can say! 

for   ( int  i  =   0 ;  i  <  arr . length ;  i ++)   { 

  arr [ i ]   =   ( int )( Math . random ()* 100 )   +   1 ; 

} 

 

// Create a boolean flag and set it to 'false' - we'll change it if we  

// find 33 

boolean  found  =   false ; 

 

 

 

 

 

 
 
 
JAVA: An Open Approach to No Objects Page 192 



// Start to iterate through the array and look for 33 

// If we find 33, let's end the search with a break 

for   ( int  i  =   0 ;  i  <  arr . length ;  i ++)   { 

   if   ( arr [ i ]   ==   33 )   { 

    found  =   true ; 

     System . out . println (" 33  resides at index  "   +  i ); 

     break ; 

   } 

} 
 
Now there are a few different search algorithms. This is the most basic - start from the 
first, and peek into each sequential element until you find it or you get to the end. This is 
what’s known as a  sequential search  or a  linear search . A more robust search, a 
binary search , will be explored in future classes. 

Finding the maximum value in an array 

Again, this is mostly an exercise in learning about arrays (although there are a few cases 
when you’ll want to know this stuff). For this example, let’s have an array called  arr  and 
let’s have it hold a bunch of  int s. Furthermore, let’s assume every element has a value 
in it. 

So here’s the game plan. Let’s look at the first element in the array, and let’s consider it 
to be the biggest number in the array. It’s the biggest number we’ve encountered so far 
as we traverse the array, so by definition it’s the largest number we know about in the 
array. I know - and you know - that by the time we’ve visited every element, the value of 
the biggest number will most likely change. But for right now, it’s the biggest number. 
We’ll go through the array, element by element, and compare it to the biggest number. If 
it’s the case that the current element has a number bigger than the biggest number, let’s 
reassign the biggest number to be that value. 

// We need to have a variable to hold the biggest number. Let's  

// go ahead and set it equal to the first element (since it needs 

// to have a value). This gives us the further optimization of  

// not having to start at element 0 because we already consider  

// the value in element 0 to be the biggest number when this  

// starts. 

 

int  biggestNumber  =  arr [ 0 ]; 

 

 

// Now let's walk through the array and look at each value. If  

// the value happens to be bigger than our current biggest  

 
 
 
JAVA: An Open Approach to No Objects Page 193 



// number, let's reassign the value of biggestNumber to be  

// whatever we happen to be looking at 

 

for   ( int  i  =   1 ;  i  <  arr . length ;  i ++)   { 

     if   ( arr [ i ]   >  biggestNumber )   { 

        biggestNumber  =  arr [ i ]; 

     } 

} 

 

System . out . println ( "The biggest number is: "   +  biggestNumber ); 

These three different examples have similarities - the  for  statement in the loop is almost 
identical. When iterating through an array, it is super important to visit  every single element  in 
the array, starting at index 0 and going through the last element. 

for-each  Loops 

As promised in the chapter about loops, we will now look at the last kind of loop - a “ for-each ” 
loop. These loops are designed for programmers like you who want to iterate through arrays, 
but don’t like all the clutter. They have the additional benefit of reducing mistakes because the 
actual iterator is hidden. 

Here is a simple code segment that uses a traditional  for  loop to output values in an array: 

 

int []  testArray  =   { 1 ,   3 ,   5 ,   6 ,   7 }; 

 

for   ( int  i  =   0 ;  i  <  testArray . length ;  i ++)   { 

   System . out . print ( testArray [ i ]   +   " " ); 

} 

 

It’s pretty straightforward - the program iterates through the array and outputs each element. But 
since iterating through arrays is such a common task, we can tighten up the code with a 
for-each  loop: 
 

int []  testArray  =   { 1 ,   3 ,   5 ,   6 ,   7 }; 

 

for   ( int  i  :  testArray )   { 

   System . out . print ( i  +   " " ); 

} 

 
 
 
JAVA: An Open Approach to No Objects Page 194 



 
In this case, the  i  is not really the iterator (in fact, all iteration is handled under the hood and we 
couldn’t even access that information if we wanted to). The  i  is really the value of each element. 
This loop control expression is read as, “For every element in  testArray , let’s consider  i  as the 
actual value in each element.” 

 

Check Yourself 

 
 

For questions 1 - 4, consider the following array declaration and assignment: 

int []  arrOfInts  =   { 1 ,   2 ,   3 ,   4 ,   5 }; 

 

1. What is the value of  arrOfInts.length ? 
 
 
 

2. What is displayed on the screen when the following code is executed? 

System.out.println(arrOfInts[3]); 

 

 

 

3. What is displayed on the screen when the following code is executed? 

System.out.println(arrOfInts[arrOfInts[3]]); 

 

 

 

4. There is one error in this code that will cause the program to crash. What is it? 

for   ( int  i  =   0 ;  i  <=  arrOfInts . length ;  i ++)   { 

     System . out . println ( arrOfInts [ i ]   +   "   "); 

} 

 
 
 
JAVA: An Open Approach to No Objects Page 195 



 

 

Stay tuned for CSC-190! 

CSC 190 CS2: Object-oriented Software Development  (4-1) 4 hrs. 

CS2: Object-Oriented Software Development covers algorithm development and 
object-oriented design and development for large-scale software and graphical user interfaces 
(GUIs). This course is the second in a series of three required programming courses for a 
traditional computer science degree. Topics to be covered include objects and classes, 
procedural vs. object-oriented programming, reference data types, class libraries, class 
design, class abstraction and encapsulation, inheritance and polymorphism, exception 
handling, abstract classes, graphical user interfaces (GUIs), and event-driven programming. 
Prerequisite: CSC 115 with a grade of C or better.   View Course Syllabus  

 

 

This one little trick will make you never 
store data the same way again! Take 

CSC-190 to find out why! 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 196 

https://flcc.edu/pdf/syllabi/CSC190.pdf
https://flcc.edu/pdf/syllabi/CSC190.pdf


 

APPENDIX A: Relevant API 
The following API are selected from different classes explored in class. Note that the APIs are 
not complete - there are many methods not discussed in this document because they aren’t 

used as much. However, links to the official API are provided. 
 

Arrays  |  Math  |  Random  |  Scanner  |  String 
 

Arrays  1

 

PRO-TIP 
 
The  Arrays  class does not need to be  instantiated  to use it. You know how with  Scanner  you 
have to create a new  Scanner  in every program? 
 

Scanner scanner = new Scanner(System.in); 

 
That’s called instantiating (because you are creating an  instance  of the  Scanner ). You don’t 
have to do that with the  Arrays  class because it is  static . Stay tuned for what that means - it’s 
on the horizon for now. 

 

Arrays.copyOf() 

This method takes in two parameters (the original array, and the length of the new array) and 
will return a new array with the values of the original array followed by the default values of a 
new array. Consider if you had an array of  int s that was size  5  and you used  copyOf() : 
 

int []  arrayOne  =   { 1 ,   3 ,   5 ,   3 ,   6 }; 

int []  arrayTow  =   Arrays . copyOf ( arrayOne ,   7 ); 

// [1, 3, 5, 3, 6, 0, 0] 

 
Note that if the second parameter - the length of the new array - is less than the length of the 
original array, the new array would only have the first few values ( copyOf()  will truncate the 
array). 

Arrays.sort() 

1   For a complete listing of all the sweet things that the  Arrays  class can do, check out: 
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html 

 
 
 
JAVA: An Open Approach to No Objects Page 197 

https://docs.google.com/document/d/140Kd6-WmQmeEoW0edlfrE7UOXD4DOU5v2fhg95YvfNc/pub#h.dos7ajnw6s5x
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html


 

This will sort the array. Note that this is a void method; the method does not return anything. 
Compare the correct way to sort an array using this method versus the incorrect way: 
 

// How to sort an array: 

int []  testArray  =   { 5 ,   2 ,   8 ,   6 ,   1 }; 

// [5, 2, 8, 6, 1] 

Arrays . sort ( testArray ); 

// [1, 2, 5, 6, 8] 

 

// How NOT to sort an array: 

int []  testArray  =   { 5 ,   2 ,   8 ,   6 ,   1 }; 

testArray  =   Arrays . sort ( testArray ); 

// This code will not work because the call to  

// Arrays.sort does not return an array. 

 

Arrays.toString() 

This method helps you output the contents of an array. Compare the proper way to output the 
contents of an array with the improper way: 
 

// How to print an array: 

int []  testArray  =   { 5 ,   2 ,   8 ,   6 ,   1 }; 

System . out . print ( Arrays . toString ( testArray )); 

 

// How NOT to print an array: 

int []  testArray  =   { 5 ,   2 ,   8 ,   6 ,   1 }; 

System . out . print ( testArray ); 

// This will just output the memory address of the array 

 
 
 

Math  2

 

PRO-TIP 
 
The  Math  class also does not need to be  instantiated  to use it. The  Math  class has a few 
constants we will use often, and a few methods that are helpful. 

2  For a complete listing of all the sweet things that the  Math  class can do, check out: 
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html 

 
 
 
JAVA: An Open Approach to No Objects Page 198 

https://docs.google.com/document/d/140Kd6-WmQmeEoW0edlfrE7UOXD4DOU5v2fhg95YvfNc/pub#h.dos7ajnw6s5x
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html


 

Math.PI 

This will return the best decimal equivalent of Pi (𝜋). Some different systems (versions of Java, 
specifications, etc.) may return a few more or less digits, but  Math.PI  is the best approximation 
of Pi). 
 

System.out.println("The value of Pi is: " + Math.PI); 

// The value of Pi is: 3.141592653589793 

 

Math.E 

Same thing as Math.PI, although it returns the base of the natural logarithm.  
 

System.out.println("The value of e is: " + Math.E); 

// The value of e is: 2.718281828459045 

 

Math.abs() 

Calling the  Math.abs()  function will return the absolute value of the argument that is passed in. 
But here’s the cool thing - there are actually four different  Math.abs()  functions in the  Math 
class (a cool example of  overloading , but that’s for another day). You can pass  Math.abs()  an 
int , and it will return the absolute value of that  int  as an  int . You can also pass it a  float  and 
get a  float  back, a  double  to get a  double  back, and a  long  to get a  long  returned. 
 

System.out.println(Math.abs(4.5); 

// 4.5 

System.out.println(Math.abs(-3); 

// 3 

 

Math.max() 

This method takes two numbers ( double ,  float ,  int , or  long ) and return the greater of the 
two. Just like  Math.abs() , there are four different methods (based on the parameters that are 
input). If two numbers are passed in (one  int  and one  double ), Java will automatically promote 
the  int  to a  double  and the return type will be a  double . 
 

System.out.println(Math.max(15, 7.1); 

// 15.0 

 
It’s noteworthy to mention that if you have three numbers, you can use a call to  Math.max()  as 
one of the parameters for another  Math.max() . Pro-tip: this is true for any argument - you can 
pass in an expression that evaluates to the type of identifier that is required by the method. 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 199 



System.out.println(Math.max(4.9, Math.max(2, 6)); 

// 6.0 

 
In the example above, the computer will analyze the call to  Math.max(2, 6)  first, and the 
“winner” will go up against  4.9 . 
 

Math.min() 

Just like  Math.max() , but this returns the smaller of the two values. 

 

Math.pow(double, double) 

This is the real way to do exponents in Java. The first parameter is the base, and the second is 
the exponent. A call to  Math.pow()  requires to numbers - each a  double  - so if you pass in two 
variables of type  int , the result will still be a  double .  
 

Math.random() 

This method requires no parameters, and will return a  double  between  0  (inclusively) and  1 
(exclusively). That means that you may get  0.0 ,  .45023 ,  .9596942 ,  .9999999 , but you’ll never 
get  1 . If you want a number that is  1  or bigger, you’ll need to multiply by 10 (or 100, or 1000, 
etc.). 
 

System.out.println(Math.random()); 

// 0.6017376710307702 

 
The above example will generate a random  double  greater than or equal to  0 , but less than  1 .  
 

System.out.println(Math.random()*10); 

// 7.1687284712872543 

 

The above example will generate a random  double  greater than or equal to  0 , but less than  1 . 
After that, the number will be multiplied by 10 to make it bigger - the result is that you’ll get a 
number between  0  and  9.999999999999999 ... 
 

System.out.println((int)(Math.random()*10)); 

// 3 

 

The above example will generate a random  double  greater than or equal to 0, but less than 1. 
After that, the number will be multiplied by 10 to make it bigger - and then it will be cast as an 
int . So the smallest the result will be is  0 , and the largest is  9 . 
 

System.out.println((int)(Math.random()*10) + 1); 

// 10 

 
 
 
JAVA: An Open Approach to No Objects Page 200 



 

 

The above example will generate a random  double  greater than or equal to 0, but less than 1. 
After that, the number will be multiplied by 10 to make it bigger - and then it will be cast as an 
int . And then it will have  1  added to it, so the smallest number is  1  and the largest it can be is 
10 .  
 

Math.round() 

Math.round()  takes in a  float  (although if you pass in a variable that can be promoted to 
float , such as an  int ,  byte ,  short ,  long ,  double  - they will all work) and will return a  long , 
rounded to the nearest whole number. 
 

System.out.println(Math.round(4.49995849)); 

// 4 

 

Math.sqrt() 

The square root method in the  Math  class takes in a  double  and returns a  double  (it’s okay if 
you give the  sqrt()  method an  int  - it will automatically be promoted to a  double ). The result 
is the correctly rounded, positive square root of the parameter passed in. 
 

Random  3

 

PRO-TIP 
 
The  Random  class needs to be  instantiated  to use it. There are two different constructors you 
can use, but in general you will use the default constructor: 
 

Random random = new Random(); 

 
That’s called instantiating (because you are creating an  instance  of the  Random  class). Just so 
you know - there really is no such thing as a random number when dealing with computers (in 
fact, some people think  human brains cannot even generate purely random numbers ). In the 
realm of computer science, we consider the  psuedorandom  numbers to be as close as we 
can get to genuinely random. 
 
 

3  For a complete listing of all the sweet things that the  Random  class can do, check out: 
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html 

 
 
 
JAVA: An Open Approach to No Objects Page 201 

https://docs.google.com/document/d/140Kd6-WmQmeEoW0edlfrE7UOXD4DOU5v2fhg95YvfNc/pub#h.dos7ajnw6s5x
https://www.ncbi.nlm.nih.gov/pubmed/17888582
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html


You can also “seed” the  Random  object when constructing it - see the  Java Vocabulary 
document entry for “Constructor” . This means that random numbers will be generated, but 
they will be the same every time you run the program - this is helpful for debugging. 
 

 
 

nextBoolean() 

A call to this will return a boolean value that is either true or false. Similar to flipping a coin. 
 

Random random = new Random(); 

 

System.out.println(random.nextBoolean()); 

// true or false 

 

System.out.println(random.nextBoolean()); 

// true or false 

 

boolean willRun = random.nextBoolean(); 

if (willRun == true) { 

System.out.println("HEADS"); 

} else { 

System.out.println("TAILS"); 

} 

 

nextDouble() 

The same thing as  nextBoolean , but it returns a  double . The catch is that this will return a 
number between  0.0  and  1.0 . 
 

Random random = new Random(); 

double randomDouble = random.nextDouble(); 

System.out.println(randomDouble); 

// Maybe 0.435345 or 0.999345345 or 0.0 or 0.3456474525 

 

nextInt() 

The same thing as  nextBoolean , but it returns an  int . This number will be between 
-2,147,483,648  and  2,147,483,647 . 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 202 

https://docs.google.com/document/d/140Kd6-WmQmeEoW0edlfrE7UOXD4DOU5v2fhg95YvfNc/pub#h.h4hwhmb6tupg
https://docs.google.com/document/d/140Kd6-WmQmeEoW0edlfrE7UOXD4DOU5v2fhg95YvfNc/pub#h.h4hwhmb6tupg


 

Random random = new Random(); 

int randomInt; 

randomInt = random.nextInt(); 

System.out.print(randomInt); 

// Your guess is as good as mine!  
 

nextInt(int) 

The same thing as  nextInt , but it returns an  int  within a specified cap! This number will be 
between  0  and the cap (that is, it can be  0 , and it can be anything between 0 and the cap, but 
not the cap). 
 

Random random = new Random(50); 

int randomInt; 

randomInt = random.nextInt(); 

System.out.print(randomInt); 

// Maybe 0, maybe 1, maybe 33, maybe 49, but NOT 50!!!!  
 

nextLong() 

The same thing as  nextBoolean , but it returns a  long . The catch is that this will not return a 
number in the entire range of  long  numbers -  Random  only uses 48 bit seeds, so the result will 
not be 64 bit. 
 

setSeed(long) 

This method will set the seed of the random number generator. Useful for debugging. 
 

Random random = new Random(); 

random.setSeed(33); 

System.out.println(random.nextInt()); 

// The output will be the same every time this program runs 

 

Scanner  4

close() 

This will “close” the  Scanner . Creating a scanner but not closing it will cause a  warning . This 
warning will not prohibit the program from running, but will be annoying in Eclipse as it will give a 
yellow underline. Closing the  Scanner  will just “delete” it from memory. 
 

4  For a complete listing of all the sweet things that the  Scanner  class can do, check out: 
https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html 

 
 
 
JAVA: An Open Approach to No Objects Page 203 

https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html


hasNext() 

This returns either  true  or  false ; it’s essentially the scanner looking ahead to see if there is 
more input. The  hasNext()  method will look to see if there is a  token  that left to be examined, 
or if the input  stream  is done. Consider these examples: 
 

// "streamOfIntegers" is a stream that contains integers. The 

// input stream is: 77 33 23 

 

Scanner scanner = new Scanner(streamOfIntegers); 

 

if (scanner.hasNext() == true) { 

  System.out.println(scanner.next()); 

} 

// 77 will be output on the screen 

 

if (scanner.hasNext() == true) { 

  System.out.println(scanner.next()); 

} 

// 33 will be output on the screen 

 

if (scanner.hasNext() == true) { 

  System.out.println(scanner.next()); 

} 

// 23 will be output on the screen 

 

if (scanner.hasNext() == true) { 

  System.out.println(scanner.next()); 

} 

// Nothing more will be output on the screen 

 

It’s a bit easier to see this in the framing of a while loop. Oftentimes, you will receive a stream of 
data (that is, a bunch of tokens separated by spaces) and will need to examine each element in 
that stream until there are no more elements. The easiest way to do that is with a while loop that 
terminates if there are no more tokens. 
 

// "streamOfIntegers" is a stream that contains integers. 

Scanner scanner = new Scanner(streamOfIntegers); 

 

while (scanner.hasNext()) { 

System.out.println(scanner.nextInt()); 

} 

// Every integer in the stream will be output on a new line 

 
 
 
JAVA: An Open Approach to No Objects Page 204 

https://docs.google.com/document/d/140Kd6-WmQmeEoW0edlfrE7UOXD4DOU5v2fhg95YvfNc/pub#h.8b7uwuhv40tl
https://docs.google.com/document/d/140Kd6-WmQmeEoW0edlfrE7UOXD4DOU5v2fhg95YvfNc/pub#h.97jfwippznls


 

next() 

This is a way to read in part of a line of text. In the biz, we call different pieces of input in one 
stream (so, like, multiple words or words and numbers all on one line) tokens. In class, we 
spend a lot of time learning about  nextLine() , which will read in an entire line of text. But let’s 
say you only want to read in part of the text (that would be a token!). Then you can use  next(). 
The  next()  method will read in text from wherever the  Scanner  object is and take in the next 
token (by default, tokens are separated by spaces). 
 

Scanner scanner = new Scanner(System.in); 

System.out.print("Enter your first name, last name, and jersey number: 

"); 

// Larry Bird 33 

String firstName = scanner.next(); // Larry 

String lastName = scanner.next(); // Bird 

int jerseyNumber = scanner.nextInt(); // 33 

System.out.println(firstName + " " + lastName + " wears " + 

jerseyNumber); 

// Larry Bird wears 33 

 

nextDouble() 

When used in an assignment statement with a variable of type  double , a call to the  nextDouble 
method will take the input from the user - whatever they typed in on the keyboard - and store the 
value in the variable. Bad things happen if you ask the user to type in a number, use 
nextDouble() , but the user types in a  String . 
 

Scanner scanner = new Scanner(System.in); 

double number; 

System.out.print("Enter a number: "); 

number = scanner.nextDouble(); 

// Stores what the user types in as 'number' 

 

nextInt() 

When used in an assignment statement with a variable of type  int , a call to the  nextInt() 
method will take the input from the user and store the value in the variable. 
 

Scanner scanner = new Scanner(System.in); 

int number; 

System.out.print("Enter a number: "); 

number = scanner.nextInt();  

// Stores what the user types as 'number' 

 
 
 
JAVA: An Open Approach to No Objects Page 205 



 
But beware! There is a danger to relying on  nextInt() ! Know that merely calling nextInt() will 
push the scanner to read the nextInt(). So consider a data stream of 50, 40, 30, and 30. 
 

while (scanner.hasNext()) { 

if (scanner.nextInt() > 55) { 

System.out.println("The number is greater than 55"); 

} else if (scanner.nextInt() > 45) { 

System.out.println("The number is greater than 45"); 

} else if (scanner.nextInt() > 35) { 

System.out.println("The number is greater than 35"); 

} else if (scanner.nextInt() > 25) { 

System.out.println("The number is greater than 25"); 

} 

 

// no output!?!?!? 

 
The issue here is that the first number,  50 , is called by the first call to  scanner.nextInt() . 
Since  50  is not greater than  55 , we  want  to compare  50  to  45 . But this is not what happens! 
Since  scanner.nextInt()  was called in the first  if  statement, the scanner has moved to the 
next token in the stream ( 45 ) - just by virtue of having the  nextInt()  method called! 
 
The correct way to do this is to assign the value of  scanner.nextInt()  to a variable, and use 
that variable for the nested  if  statements: 
 

while (scanner.hasNext()) {  

int temp = scanner.nextInt(); 

if (temp > 55) { 

System.out.println("The number is greater than 55"); 

} else if (temp > 45) { 

System.out.println("The number is greater than 45"); 

} else if (temp > 35) { 

System.out.println("The number is greater than 35"); 

} else if (temp > 25) { 

System.out.println("The number is greater than 25"); 

} 

 

// The number is greater than 45 

 

nextLine() 

When used in an assignment statement with a variable of type  String , a call to the  nextLine() 
method will take the input from the user and store the value in the variable. The difference 

 
 
 
JAVA: An Open Approach to No Objects Page 206 



between  nextLine()  and  next()  is that  nextLine()  will read in  all  the input to the end of the 
line, whereas  next()  will only read from the current position and go to the next  token  (basically 
a space). Because  String  is fairly inclusive, if the user types in a number instead,  nextLine() 
will still assign that number as a  String . The program will run, but that number is a  String  so 
the computer cannot do calculations on it. 
 

Scanner scanner = new Scanner(System.in); 

String name; 

System.out.print("Enter a number: ");  

name =  scanner.nextLine(); 

// Stores what the user types as 'name' 

 

nextBoolean() 

Just like all the other ones, except it returns a  boolean . 
 

nextByte() 

Just like all the other ones, except it returns a  byte . 
 

nextFloat() 

Just like all the other ones, except it returns a  float . 
 

nextLong() 

Just like all the other ones, except it returns a  long . 
 

nextShort() 

Just like all the other ones, except it returns a  short . 
 
 

PRO-TIP 
When using a  Scanner , sometimes weird things happen if you scan in numbers and then 
words. Here’s the deal. Think of a  Scanner  as a program that looks at each piece of data in 
an input stream (when you punch keys on the keyboard, that’s an input stream). This 
explanation may be a bit of an oversimplification, but bear with me. 
 

Scanner scanner = new Scanner(System.in); 

System.out.print("Enter your age: "); // user inputs 38 

 
Well, at this point, the input stream looks like this (the orange pointer is where the  scanner 
currently is): 

 
 
 
JAVA: An Open Approach to No Objects Page 207 

https://docs.google.com/document/d/140Kd6-WmQmeEoW0edlfrE7UOXD4DOU5v2fhg95YvfNc/pub#h.8b7uwuhv40tl


 

 
 

int age = scanner.nextInt(); 

 
Now when this line of code executes, the scanner will read the input stream until it captures 
an  int . So we would expect the  scanner  to read the  38  and then finish up it’s job. 
 
Which it does. So the  scanner  is now after the  38 .  
 

 
 
The problem is, it’s still on that line of text. So if we ask it to read the next line with a call to 
nextLine(),  the  scanner  will still be on the first line: 
 

System.out.print("Enter your name: "); // user inputs "Katie" 

String name = scanner.nextLine();  

 
 

 
 

So the issue here is that the call to  scanner.nextLine()  is going to read the input up until it 
gets to a point where it has to go to the next line. As it turns out, the pointer is at a next line 
indicator right now, so the call to  scanner.nextLine()  is going to read in that next line mark, 
and nothing else. 
 

 
 
 
JAVA: An Open Approach to No Objects Page 208 



 
 

So now the  scanner.nextLine()  code has executed, and we  want  the software to have read 
“Katie”, but instead it read the next line indicator on the previous line. So, we have to invoke 
nextLine()   again  to have the pointer travel to the next next line indicator. 
 

name = scanner.nextLine(); 
 

 
 
In this case, the input has now been read and stored. So all is good with the world. For the 
record, here is the complete code to scan in a number and then a  String . Note that if you 
read in a  String , there is no need to go to the next line before reading in a number - the call 
to read the  String  -  nextLine()  - will automatically put the pointer at the beginning of the 
next line (where the data for the number to read in is). 
 

Scanner scanner = new Scanner(System.in); 

System.out.print("Enter your age: "); // user inputs 38 

 

System.out.print("Enter your name: "); // user inputs "Katie" 

scanner.nextLine(); 

String name = scanner.nextLine();  

 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 209 



 

String  5

charAt(int) 

This method, when called on a  String , will return the character at the specified index of the 
String . It is important to note that the index starts at 0 (so the seventh character is really at 
index six). It will return a  char . 
 

String testString = "This is a test String"; 

char position; 

position = testString.charAt(6); 

System.out.println(position); // s 

 

compareTo(String) 

This method will compare two variables of type  String , and return a number. Yes, you read that 
right. A number is the answer. That number is the difference of the Unicode value of the first 
digit that is not the same in both  String  variables. Huh? 
 
So, let’s look at the two  String  variables,  s1  and  s2 : 
 

String s1 = abcD; 

String s2 = abcd; 
 
Well, when a call to  System.out.print(s1.compareTo(s2))  is made, then the computer 
looks at the first character in each  String  - in this case, ' a '. The computer will subtract the 
numerical value of the second ' a ' from the first ' a '. Since both of the ' a ' characters are the same - 
97  - the difference is  0 . So the computer moves on to the second character in both of the 
String  variables and subtracts them. Well, ' b ' evaluates to  98 , so the difference between both 
the ' b ' characters is again,  0 . So the computer looks at the third character, ' c '. Once more, the 
difference between the two decimal equivalents of each of these characters is  0 , so the 
computer moves on. Here’s where things get interesting. The decimal equivalent of ' D ' is  68 
whereas the decimal equivalent of ' d ' is  100 ! So  68 - 100  yields  -32 . This means that not only 
are the two variables not the same, but that the first variable,  s1 , comes alphabetically 
(lexicographically) before  s2 .  
 
That’s true in any case - if the number returned after comparing two  String  variables is 
negative (no matter what the quantity), the first variable comes before the second. And vice 
versa. 
 

5  For a complete listing of all the sweet things that the  String  class can do, check out: 
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html 

 
 
 
JAVA: An Open Approach to No Objects Page 210 

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html


So the following code will reliably arrange two words alphabetically: 
 

Scanner scanner = new Scanner(System.in); 

 

System.out.print("Enter a word: "); 

String word1 = scanner.nextLine(); 

 

System.out.print("Enter another word: "); 

String word2 = scanner.nextLine(); 

 

if (s1.compareTo(s2) == 0) { 

System.out.println("The two words are equivalent."); 

} else if (s1.compareTo(s2) < 0) { 

System.out.print(s1 + ", " + s2); 

} else { 

System.out.print(s2 + ", " + s1); 

} 

 

compareToIgnoreCase(String) 

Same exact thing as  compareTo() , although case is ignored. 
 

contains(String) 

This method will check to see if the parameter,  str , is part of the  String . The  contains() 
method will return a  boolean  value ( true  if  str  is part of the  String , and  false  otherwise). 
 

String s1 = "Hello world!"); 

String s2 = "lo"; 

if (s1.contains(s2) { 

System.out.println("The expression " + s2 + " is found in " + 

s1); 

} else { 

System.out.println("The expression " + s2 + " is NOT found in " + 

s1); 

 

// The expression lo is found in Hello World! 

 

equals(Object) 

When invoked, this will return  true  (a  boolean ) if the original  String  and the  String  passed in 
share the same characters in the same order ( false  otherwise). You would think that the 
parameter - of type  Object  - should be a  String , but it is not. This is because of overriding 
inherited methods - a story for another day. 

 
 
 
JAVA: An Open Approach to No Objects Page 211 



 
String firstString = "ABCdef"; 

String secondString = "ABCdef"; 

String thirdString = "abcdef"; 

 

System.out.println(firstString.equals(secondString)); // true 

System.out.println(firstString.equals(thirdString)); // false 

System.out.println(firstString.equalsIgnoreCase(thirdString)); // true 

 

Note that this method is only valuable for discovering if two  String  variables are equal - it does 
not really give enough information if you are trying to sort the variables or alphabetize them. For 
that, you’ll need to look at  compareTo() . 
 

equalsIgnoreCase(String) 

Same thing as  equals() , although this method does not differentiate between uppercase or 
lowercase. 
 

indexOf(char) 

Returns the position (zero-indexed!) of the first occurrence of the char that is passed in. If the 
char does not appear in the String, a value of -1 is returned. Otherwise, return an int that is the 
index of that char. 
 

String testString = "In a galaxy far away..."; 

System.out.println(testString.indexOf('a')); // 3 

System.out.println(testString.indexOf('q')); // -1 

 

length() 

Simply returns the length, as an  int , of the  String . This is just how many characters are in the 
String  (so don’t get confused about zero-indexes - this is a pure, human, natural way of 
counting. 
 

String firstString = "This is a test"; 

System.out.println(firstString.length()); // 14 

 

substring(int) 

This will return a  String  - most likely smaller than the original  String  - that starts at the 
position passed in and goes until the end. Recall that any  String  is zero-indexed. 
 

String testString = "Biggest ball of Twine."; 

System.out.println(testString.substring(11)); // l of Twine. 

 
 
 
 
JAVA: An Open Approach to No Objects Page 212 



substring(int beginIndex, int endIndex) 

Very similar to the Substring method above, except that it accepts  two   int  variables as input. 
The  String  that is returned will start at the first  int , and end at the second  int  (although it is 
non-inclusive for the second parameter). 
 

String testString = "Like a giant carbonated soda."; 

System.out.println(testString.substring(11, 17)); // t carb 

 

toLowerCase() 

Returns a  String  that is a lowercase version of the original  String . Note that this does NOT 
change the value of the original  String  (unless you specifically tell it to). 

 
String testString = "Don’t YOU know that other kids are..." 

System.out.println(testString.toLowerCase()); 

// don’t you know that other kids are... 

 

System.out.println(testString); 

// Don’t YOU know that other kids are... 

 

testString = testString.toLowerCase(); // reassign the String 

System.out.println(testString); 

// don’t you know that other kids are... 

 

toUpperCase() 

Returns a  String  that is an uppercase version of the original  String . Note that this does NOT 
change the value of the original  String  (unless you specifically tell it to). 
 

String testString = "You make me wanna staple waffles to my face!"; 

System.out.println(testString.toUpperCase()); 

// YOU MAKE ME WANNA STAPLE WAFFLES TO MY FACE! 

 

System.out.println(testString); 

// “You make me wanna staple waffles to my face! 

 

testString = testString.toUpperCase(); // reassign the String 

System.out.println(testString); 

// YOU MAKE ME WANNA STAPLE WAFFLES TO MY FACE! 

 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 213 



trim() 

Returns a  String  that has the leading and trailing whitespace removed (this can eliminate extra 
spaces before and after input). 
 

String testString = "     Space… The final frontier...     "; 

System.out.println(testString.trim()); 

// Space… The final frontier... 

 

System.out.println(testString.length()); // 40 

testString = testString.trim(); 

System.out.println(testString.length()); // 30 

 
 
  

 
 
 
JAVA: An Open Approach to No Objects Page 214 



APPENDIX B: Reserved Words 

RESERVED WORDS 

There are some basic words in Java that have special meaning. For instance, “System” in 
System.out.println() has a specific meaning, and programmers cannot override that meaning. 

abstract do if private this 

assert double implements protected throw 

boolean else import public throws 

break enum instanceof return transient 

byte extends int short true 

case false interface static try 

catch final long strictfp void 

char finally native super volatile 

class float new switch while 

const for null synchronized continue 

default goto package   

 
 
  

 
 
 
JAVA: An Open Approach to No Objects Page 215 



 

 

 

 

 

APPENDIX C: Java Vocabulary 
 

Abbreviations 

API 
Application Programmer Interface 
Think of the API as an instruction booklet for code. In iOS, the API informs developers of the 
functions that they have access to (for instance, there is an API for the camera on iPhones, so 
developers can use certain functions of the camera. However, there is no API for the Messages 
app, which is why app developers can’t access any messages. This is not true for Android - 
there  is  an API for messages. Consequently, there are dozens of apps you can get that allow 
you to manage your messages (PushBullet and MightyText are some of them). 
 
 
IDE 
Integrated Development Environment 
An IDE is software that gives you the tools to program Java. This shouldn’t be confused with the 
JDK (that gives you the tools to compile and run Java) - the IDE helps you develop programs. 
Eclipse is a good example of an IDE. Most IDEs have an editor (where you type the code in - in 
Eclipse, the editor has features like autocomplete, code-collapsing, and partial compilation that 
underline incorrect code). 
 
 
JDK 
Java Development Kit 
The Java Development Kit includes all the tools you need to develop in Java. Not only does it 
include the Java Runtime Environment (JRE), but all the other tools - like a compiler - that you’ll 
need. If you download the JDK, you don’t need to also download the JRE (it’s included!). 
 
 
JRE 
Java Runtime Environment 
Sometimes Java doesn’t come installed on computers. If your computer isn’t Java enabled, 
you’ll need to download this if you want to run Java programs. It’s not an app that you run on 
your computer; the JRE runs in the background. 
 
 
JVM 
Java Virtual Machine 
The Java Virtual Machine is what runs on your computer and allows you to execute Java 

 
 
 
JAVA: An Open Approach to No Objects Page 216 



 

programs. It takes in a  .class  file (bytecode) and converts it to 1s and 0s. The JVM is specific 
to the platform it is running on (MacOS, Windows, mobile devices). 
 
 
Vocabulary 

Access Modifier 
Part of a method signature; this declares what access other classes have to the method. There 
are four options:  public ,  private ,  protected , and default (that is, if no access modifier is 
listed).  

● public  means any other class can see (and use) the method 
● private  means only the class the method is defined in can see (and use) the method 
● protected  means any class in the package  and  any subclass of a class in the package 

(even if that subclass is in a different package) can see (and use) the method 
● default means any class in the package can see (and use) the method 

 

 
In this example, if  rollDie()  is  public , any of the classes in the project  Assignments  can use 
rollDie()  (we may have to instantiate the  MethodDemoII  class, but that’s easy). If  rollDie() 
is  private , then  only  the  MethodDemoII  class can use  rollDie() . If  rollDie()  is  protected , 

 
 
 
JAVA: An Open Approach to No Objects Page 217 



 

then any other class in the  zNothingToSeeHere  package can use  rollDie() , and any 
subclass of  MethodDemoII  that resides in other packages (but don’t worry about subclasses 
yet). 
 
 
Binary Search 
The binary search is a sweet algorithm that helps search for one item - in a list of many items - 
in the shortest time possible. Assuming that the items are sorted (like in a dictionary), and 
assuming that the data structure is a simple one (not a hash table, for instance), nothing is 
faster than the binary search. The search will always pick the middle item, and determine if the 
item it is looking for is before that middle item or after it. In doing so, half the items in the list are 
discarded. This process is repeated until the item is found. 
 
In the example of a dictionary, let’s imagine we are looking for the word “sword”. We would 
probably open the dictionary up to the middle, and compare the word we see (perhaps it is 
“maven”), and determine if we need to examine from “maven” to “zap” or “abracadabra” to 
“maven”. Turns out, we are interested in the “maven” to “zap” words. So, we estimate the page 
in between where we are and the last page, and open to it. Looks like we are on “sorcerer”. 
Again, we determine we need to look at the pages from “sorcerer” to “zap”. So we estimate 
halfway and turn to that page. The first word is “wand”. Looks like we’ll have to go to the pages 
between “sorcerer” and “wand”. We go in the middle and end up at “unicorn”. So now we know 
we need to look at the pages from “sorcerer” to “unicorn”. Sooner or later, we’ll zero in on 
“sword”. 
 
The worst case scenario of guesses in a binary search is log(n). That means, if there are 100 
items, we are looking at log(100) which is 7. Here’s a sweet diagram of searching for 68: 
 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 218 



 

 

The best case scenario is one guess - so if the number is 50, and the first guess is 50, BAM! 
Done! 
 
The worst case scenario is if the number is 2 (or 99, or 97, or any number that results in c). Here 
are the guesses: 

 
50 25 13 7 4 3 2 

50 75 87 93 96 98 99 

 

 
Bytecode 
When Java programs that you write are run, they don’t get crunched down into 1s and 0s 
(whereas in other languages they would go directly from English to binary). The JVM will take 
the bytecode and crunch it into 1s and 0s for the specific platform the JVM is on. This helps 
make the experience the same across platforms. The original program is a  .java  file, but when 
it is crunched down into bytecode, it will be a  .class  file. 
 
 
Casting 
Telling the computer to treat one variable as a type that it isn’t. 
 

double priceOfGas = 2.29; 

System.out.println(priceOfGas); // 2.29 

System.out.println((int)priceOfGas); // 2 

 

This happens sometimes when outputting items using  System.out.print()  as any number 
that is concatenated to a  String  becomes a  String  automatically. 
 

System.out.println(6 + 3 + " Sum"); // 9 sum 

System.out.println("Sum " + 6 + 3); // Sum 63 

System.out.println("Sum " + (6 + 3)); // Sum 9 

 
Variables will be automatically promoted during mixed-mode arithmetic (that is, if not all of the 
variables are of the same type). Automatic promotion means a restrictive type (like an  int ) will 
automatically be turned into a more accommodating type (such as a  double ). 
 

System.out.println(40 / 2); // 20 

System.out.println(40 / 2.0); // 20.0 

System.out.println(10 / 4); // 2 

System.out.println(10 / 4.0); // 2.5 

System.out.println(10.0 / 4.0); // 2.5 

System.out.println(10.0 / 4); // 2.5 

System.out.println((double)(10 / 4)); // 2.5 

 
 
 
JAVA: An Open Approach to No Objects Page 219 



 

 

 

 

 

System.out.println((double)8 / 3); // 2.0 

 
 
Class 
Often associated with an object, a class is a template for creating a instance. In general, classes 
need to be  instantiated , at which point they become  objects . It’s usually easier to give an 
example of a class and object in real life. The classic example is an Automobile. The 
Automobile class has properties (such as model year, top speed, number of doors, color, and 
transmission type). The Automobile class also has a list of things it can do (such as drive 
forward, turn, go in reverse, and park). An Automobile as a class is just a concept - something 
we talk about. But once we breathe it life - once we create an instance of it and give it 
properties, it becomes real. So no one drives a generic automobile around, but people do drive 
Nissan Xterras around. My first Automobile was a 2001 Nissan Xterra, with a top speed of 105, 
4 doors, blue, and standard. THAT is an object - a physical, specific manifestation of the idea of 
an Automobile. It’s an oversimplification to say this, but you can think of a class as a little mini 
program, because classes typically have their own code. 
 
 
Command Line 
Some masochists like to program from the  command line . This is like the good old days of DOS. 
Usually it’s a black screen with gray, monospaced font. You see things like: 

 
javac HelloWorld.java 

 
Unless you have a compelling reason to program from the command line, you are much better 
off using an IDE.  
 
 
Compiler 
High level languages need to be compiled so that they can be “crunched” down to ones and 
zeros (machine language). A compiler will look at the entire source code of a file and translate it 
to machine language, and then execute the code. Note that this differs from an  interpreter 
because an interpreter will translate one statement at a time and then run it. 
 
 
Condition 
Conditions are used in  if  statements, and are the test to decide whether the code in an  if 
statement block will execute or not. 
 
 
Concatenate 
Joining together (or “gluing” ) multiple  String s (usually characterized by a “ + ” in Java) 
 

 
 
 
JAVA: An Open Approach to No Objects Page 220 

https://docs.google.com/document/d/140Kd6-WmQmeEoW0edlfrE7UOXD4DOU5v2fhg95YvfNc/pub#h.dos7ajnw6s5x


 

 

int age = 38; 

System.out.println(“Hello, you are ”  +  age  +  “ years old.”); 

 
 
Constructor 
A  constructor  is a method in a class that specifies how an object of a specific class will be 
created. All this to say that a constructor is the specifics of how something is “born” in the 
program. Let’s look at the  Scanner  class. When you “create” an instance of it in your program, 
you write: 
 

Scanner scanner = new Scanner(System.in); 
 
This is a constructor! This particular constructor will create a  Scanner  that uses the input stream 
of the system. There are a few other ways to create a  Scanner , too (for instance, instead of 
passing in  System.in , you could pass in a filename). 
 
Now let’s look at the  Random  class. There are a few different constructors for this object, too. 
You  usually  would do this: 
 

Random random = new Random();  
 
This is the default constructor (it has no parameters). This will get you a sweet random number 
generator. But let’s say you want to do some debugging in your software; it’s hard to see if the 
program is doing what you think it is doing (the output changes every time because, you know, 
random numbers). In that case, you can invoke the constructor that takes a parameter. In this 
example, you pass it a “seed” which is what the random number is based off of. So first you 
construct the  random  object: 
 

Random random = new Random(1234); 

 
I chose to use  1234  as an example - you could put any  long  data in there. But if you construct 
the  Random  object with a seed, all the output will be the same every time the program executes. 
Note that there are only two different constructors for  Random , whereas  Scanner  has ten 
different ones. 
 
 
Deprecated 
No longer supported. Code that is deprecated  may  still work, but technically it doesn’t have to. 
So be careful. It’s a wise move to update existing code that contains deprecated features so that 
they work with the current rule set in Java. 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 221 



 

 

EPOCH 
In the computer realm, the  EPOCH  refers to January 1, 1970, at precisely 12:00AM. This is 
when we - as programmers - have decided we will start time. Most calculations of time are 
based on how many milliseconds have elapsed since then. You can get the number of 
milliseconds by using the command: 
 

long numOfMillis = System.currentTimeMillis(); 

 
Note that this is a variable of type  long , so you’ll need to store it in a  long . 
 
 
Errors 
There are three major error types in Java 
 

Syntax Error 
Analogous to a typo in Word, a  syntax error  will prevent the program from running. In 
Eclipse, the syntax error is underlined in red and if you hover over it, a hint pops up about 
what the error is. Examples include missing a semicolon or spelling a word incorrectly. 
 

System.out.print1n(“Hello World”); 

 

The error in the above line is in the .println portion - the software engineer used a one (“ 1 ”) 
instead of a lowercase L (“ l ”). 

Run-Time Error 
This occurs because the code is typed right, but as the program runs the computer runs 
into a situation that makes the program crash. For instance, a program that asks the user 
to enter two numbers and then divides them, will crash if the user enters  10  and  0 
(because  the software attempts to divide by zero). Or perhaps the user is supposed to 
type in their age and they type in a bunch of letters instead - the software may crash 
because it can’t store a whole bunch of letters in a variable that is of type  int . 

Logical Error 
You may never find out that you’ve created a logical error because they don’t prevent the 
program from running and they don’t crash the program when it is running. A  logical error 
occurs when the computer does exactly what you told it to do, but you told it to do the 
wrong thing. It’s the same thing as giving someone directions to your house, but you tell 
them to turn left instead of right. Well, they followed the directions it’s just that they didn’t 
end up where they should have because they listened to you. This happens often when 
programming loops because computer scientists start counting at  0  instead of  1 , so you 
end up with “off-by-one errors” or “fencepost errors” 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 222 



 

 

 

Escape Character 
The character(s) that tell the computer, “Hey, listen, I know you  want  to do one thing to the 
output in quotation marks, but I’m telling you that you need to do something else. Trust me, little 
computer!” 

 
\ 

Slash 
Whack 

System.out.println("I'm not \"the norm\" - Chris Farley"); 

System.out.println(“This will\nbe a new line”); 

System.out.println(This is\ta tab”); 

 
 
Instantiate 
The root word,  instance , means a single version of something that can be copied. In the real 
world, there is a theoretical concept of a car. Everyone knows a car has wheels, doors, lights, 
and a color and can do certain things (move, park, idle). If we were to  instantiate  a car, we 
would breathe life into it. We would give it very elaborate specifications (the number of wheels, 
the number of doors, where the lights are, what color it is), and we’d say how fast it can go, how 
to park it, and what happens when it idles. So this instance of a car could be my 2001 Nissan 
Xterra. Or maybe it’s the Delorean from Back to the Future. Or maybe it’s a current model year 
Tesla S. In all of these examples, the abstract concept of a car has been realized with very 
specific details. Later in Java, the breadth of the car example will make sense. But for now, 
there are only a few classes we deal with that require instantiation ( Scanner , for instance). The 
code to instantiate a  Scanner  requires that we give the instance a name - usually we use 
“ scanner ”. In this example, let’s call it “ fluffy ” because a  Scanner  is just so cute and 
adorable. 
 

Scanner fluffy = new Scanner(System.in); 
 
The only naming requirement is that it adheres to the naming conventions of variables in Java 
(must start with a lowercase letter, use camelBack writing when necessary, etc.). 
 
 
Interpreter 
An interpreter converts statements in the source code to machine code (or virtual machine 
code)  one at a time , and then executes it right away. Interpreting translates the statements 
individually and then executes them one at a time. This is not to be confused with  compiling , 
which will crunch down  all  the statements - the source code - and then execute the whole thing. 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 223 



 

 

 

Iterate 
A loop is said to iterate when it runs. Every time the loop repeats, it  iterates . When discussing 
loops, the convention is for programmers to say something like, “This loop should iterated ten 
times,” or “In this particular iteration, the value of the variable ‘counter’ doesn’t increase. What 
gives?” 
 
It is acceptable to refer to one of the particular times a loop runs as an iteration. 
 
 
Method 
Think of a method as a separate part of the program that will run when it is called. All methods 
have a  signature  - that is, an access modifier, a return type, method name, and parameters. 
Here’s a great example: 
 

public double area (int width, int height) { 

// code to compute area of a quadrilateral 

} 

 
Presumably, without examining the code, this method called  area  can run from any class 
(because it’s  public ), and takes in two parameters (or arguments) - namely,  width  and 
height , which are both of type  int . It returns a  double  (so the main program better be 
expecting an answer of type  double ). 
 

public double area (int radius) { 

// code to compute area of a circle 

} 

 
This method is also  public , also named  area , and also returns a  double . The difference is that 
this method takes in only one parameter -  radius . If both of these methods were in the same 
class, the main program would not have a problem figuring out which one to use because it 
would dole out the workload to the method with the proper number of parameters. See 
overloading . 
 
 
Mixed Mode Arithmetic 
This happens when you have a mathematical operation with variables of different type (for 
instance a  double  and an  int ). In these cases, all the variables are automatically cast as the 
least restrictive type in the expression. So if two variables are divided - an  int  and a  double  -, 
then the  int  is automatically promoted to a  double  and the answer is provided as a  double . 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 224 



 

 

 

 

 

Object 
An  object  is a manifestation of a  class . The class specifies that each object that is derived from 
that class will have specific properties and specific functions. Each object from a class will have 
it’s own, personal properties (so in the Automobile example, the Automobile class specifies that 
every object of that class (that is, every automobile that drives around) will have it’s own model 
year, top speed, number of doors, color, and transmission type. But every instance of 
Automobile (every object of Automobile) will be able to drive forward, turn, go in reverse, and 
park. 
 
 
Overloading 
Method  overloading  occurs when a class has two methods with the same name, but the number 
(or type) of parameters is different. A good example is the  String  class. It has two methods 
named  substring() . The computer knows which method to use based on the number of 
parameters. The  substring  method returns part of a  String . In the case where there is one 
argument - an  int  -, the software will return all the letters in the  String , starting from the 
number passed in and going to the end. In the other case, when two integers are passed in, the 
computer will return part of the  String  (including the first number, and all the characters  up to 
the second number). 
 

String thisString = “This is a String.”; 

System.out.println(thisString.substring(6); 

// s a String. 

System.out.println(thisString.substring(6, 12); 

// s a St 

 
 
private 

The access modifier of private will limit the scope of the item (class, method, variable) to the 
class where the item resides. 
 
 
protected 

The access modifier of protected will limit the scope of the item (class, method, variable) to the 
package the item is in (and any subclasses of that class in a different package). 
 
 
public  
The access modifier of public will grant access to the item (class, method, variable) to “the 
world”. This essentially means other classes in the project, regardless of if they are in different 
packages or not.  
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 225 

https://docs.google.com/document/d/140Kd6-WmQmeEoW0edlfrE7UOXD4DOU5v2fhg95YvfNc/pub#h.3qpapnl70yqu


 

 

 

 
Reserved Words 
There are around fifty words in Java that already have a specific meaning. Don’t try to use them 
as variable names or class names (because terrible things will happen). Examples include: 
 

abstract double int super 

assert else interface switch 

boolean enum long synchronized 

break extends native this 

byte final new throw 

case finally package throws 

catch float private transient 

char for protected try 

class goto public void 

const if return volatile 

continue implements short while 

default import static  

do instanceof strictfp  

 
 
Stream 
A stream is a bunch of information given to the computer at one time. The colloquial expression 
“streaming music” means that bytes of data are coming in steadily. In Java, a data stream will 
usually have multiple tokens in it. For instance, this is a stream of integers: 
 

45 675 234 65 134 98054 234 5690 

 
Generally speaking, a stream uses spaces as a delimiter (that is, the stuff between each of the 
tokens). 
 
 
Token 
When reading in text into a program (for instance, using an instance of Scanner), a token refers 
to a chunk of the text. By default, the Scanner will consider spaces delimiters, so a token would 
be anything that has a space before and after it (the notions of tokens is helpful when you want 

 
 
 
JAVA: An Open Approach to No Objects Page 226 



 

to read in only part of the input from a user: 
 

Scanner scanner = new Scanner(System.in); 

System.out.print("Please enter your first and last name: "); 

// Fred Rogers 

String firstName = scanner.next() // Fred 

String lastName = scanner.next() // Rogers 

System.out.println("Hello, " + firstName); 

System.out.println("Shall I call you Mister " + lastName + "?"); 

 
 
Truncate 
Chopping off anything after the decimal. This will happen automatically if you cast a  double  to 
an  int . Note that  truncating  is not the same as rounding! If you truncate  3.9 , the value is  3 , not 
4 ! 
 

double pi = 3.14159; 

System.out.println(pi); // 3.14159 

System.out.println((int) pi); // 3 

 
 
 
 
 

 

  

 
 
 
JAVA: An Open Approach to No Objects Page 227 



APPENDIX D: Answers to Textbook Questions 
 
CHAPTER 1 

Section 1.1 

#1 True: a computer program is an algorithm built specifically for a computer to use. 

#2 Typing data and commands in binary (ones and zeroes) is slow and mistakes are 
more likely. Like assembly languages, it is specific to one type of processor, so 
every program would need to be rewritten for each type of processor. 

#3 Programmers do not need to compile their code for each platform their customers 
use, but instead rely on the JVM (Java Virtual Machine) to be installed on each 
customer’s computer so it can interpret and execute the program. In other words, 
programmers can distribute to customers with Windows, Linux, or MacOS by 
writing and compiling only once. This perceived advantage is where the slogan, 
“write once, run anywhere” originated. 

Section 1.2 

#1 False: An IDE is a convenient program to help programmers perform the tasks of 
writing, compiling, debugging but it isn’t necessary. For instance, any text editor 
can be used to write code as it is stored in basic text format, javac is a command 
line program used to compile Java code into bytecode, and there are various 
methods and programs separate from IDEs that can be used to debug programs. 

#2 Colorizing code, linting code to highlight errors and warnings, code collapsing, 
code completion (also called code assist, or autocomplete), file and project 
management, keystroke shortcuts, and integration with version control systems 
like Git. 

#3 Many Java programs have code that relies on the code in multiple .java files. A 
project set up in an IDE makes it easy to manage these multiple-file programs, 
making it easy to forget about the dependencies, as well. It’s best to copy entire 
projects, keep a workspace that manages all your projects “in the cloud”, or use a 
cloud-based version control system if you need to work on programs from 
multiple locations. 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 228 



Section 1.3 

#1 Typing the code, like writing notes, gives a learner an opportunity to process and 
try to understand what is being typed. Also, practice by typing is the  only  way to 
establish natural use of patterns that learners are not accustomed to, like 
semicolons at the end of statements, different rules for capitalization, using 
braces and square brackets, etc. 

#2 comments 

#3 token 

#4 { and }, also called curly brackets. Braces are used to show the start and end of 
blocks of code, such as the body of code in the main method. 

#5 The  main  method is the most prominent, but don’t miss  print . The  main  method 
is completely  defined (declared)  in the First class, but  print  is  called  in order to 
output some information. The print method is defined elsewhere in code that is 
automatically imported. 

Section 1.4 

#1 False. There is enough flexibility within the syntax and even within common 
conventions for solutions to the same problem to have code that is written in 
different styles. Furthermore, there are often many different algorithms (specific 
processes to solve a problem) that can solve the same problem, so the entire 
approach can be very different, as well. 

#2 False. Comments should be used when they help make code more readable and 
easier to understand. It is possible to have too many comments spreading out the 
code so it is harder and slower to read. However, learners are encouraged to err 
on the side of writing too many comments as they come to grips with new code. 
As expertise increases try to write code that is clear enough with less comments. 

#3 Code is indented to show that it is structurally  inside  other code (also called 
nested). For instance, all of the code between the opening and closing braces of 
the main method is indented to show that it is inside the main method. 

 
 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 229 



Section 1.5 

#1 An iteration is one cycle through a loop of repetition. If you are pedaling a bike 
and your right foot presses on the pedal as it’s on the top, and it comes all the 
away around back to the top again, that is one iteration of pedaling. To get to the 
store on your bike, it will take many iterations of that action. The foot is causing 
the pedal to iterate through this loop of repetition. 

#2 The  println  method inserts a newline character after whatever it is supposed to 
output, while  print  leaves the insertion point directly after the last character it 
output. In other words,  println  prints and begins a new line, while  print  just 
prints.  

#3 Write and edit code, compile code, test code. If the program doesn’t meet all the 
requirements, the programmer does it again! Note: another word for edit could be 
debug. 

CHAPTER 2 
Section 2.1 

#1 The three types of comments are: 
 

● Line comment : use 2 forward slashes with no space // - tells the compiler to 
ignore the rest of the line. 

● Block comment : use a forward slash then an asterisk with no spaces to start a 
block comment, and end with an asterisk then a forward slash with no space /* … 
*/ - the compile will ignore all text between the start and the end markers. 

● JavaDoc comment  (or Documentation Comment) - like a block comment, except 
there is an additional asterisk on the start /** … */ -The compiler treats them like 
a block comment, however, there is an additional application that can generate 
professional documentation from the comments and tags found within them. 

 
#2 Everything a programmer should know about the program. Minimally, who wrote 

it, when it was created and/or modified, and what the program does (description 
of its purpose). Additional information could be added, such as the company, 
platform it was created on, version of java it was created in, version of the 
program itself, project specifications, lead designer, etc. 

 
#3 a, b, d ( c. is not valid use of commenting because the variable declaration is 

itself in the comment and will be ignored by the compiler.) 

 
 
 
JAVA: An Open Approach to No Objects Page 230 



 
#4 ANSWERS WILL VARY 

 

LETTER STRENGTHS WEAKNESSES 

a Clean and Simple 
Easy to read 
 

A lot of // (line comments) 

b Easy to write multiple lines  
 

Does not look as polished as the 
other methods 

c Clean and Simple Unless IDE sets it up to 
automatically put the * in each line, 
and be tedious. 

d Sharp and fancy :) Takes more time to set this up. 

e Great for professional API 
and documentations 

Difficult to figure out how to set up 
correctly. 

f Quick and simple No heading for author, date, and 
purpose (but is it really needed?) 

 
#5  
//Author: Will McLaughlin 
//Date: 6.29.17 
//This program will print the alphabet to the standard console output. 
 
public   class   AlphabetPrinter2  { 
 
   //This is an application, so has a main method. 
   public   static   void  main ( String []  args )  { 

 
     int  anUnusedVariable  =   0 ;   //an unused variable 

 
     //variable to hold the initial letter to be printed to the console 
     //and is initialized to the letter a, the first character to print 
     char  letter  =   'a'; 

 
     //loop through all the letters of the alphabet and print 
     for ( char  ch  =  letter ;  ch  <=   'z' ;   ++ ch ){ 
       System . out . print ( ch ); 
    } 
  } 
} 

 
 
 
JAVA: An Open Approach to No Objects Page 231 



Section 2.2 

#1 int ,  double , and  String 
 
#2 A.  int 

B.  String 
C.  double 
D.  int 
E.  double 
 

#3 int   numClasses ; 
 
#4 A .  int   age ; 

B.  String   petName ; 
C.  double   total ; 
D.  int   numStudents ; 
E.  double   numSiblings ; 

 
#5 Pascal case is also known as UpperCamelCase. It is like camelCase, but starts 

with an uppercase letter. (camelCase is used for variables, while PascalCase is 
used for naming classes.) 

 

Section 2.3 

#1 A. no ‘i’ in println. Needs to be:   System . out . println ( "Hello World!" );  
 

B. Missing the addition operator in the argument expression.  Should be: 
      System . out . println ( "Hello " +  name  ); 
 

C. Missing the closing double quote to end the string. Should be: 
      System . out . println ( "Hello \"World\"!" ); 

 
#2 A. Output: 

     Hello 

           “World” 

     ! 

 

 

 

 

 
 
 
JAVA: An Open Approach to No Objects Page 232 



 B. Output (note: no space between ‘The’ and ‘quick’): 
     Thequick brown fox jumps over 

     the lazy 

     dog! 

 

C. Output: 
Sum of 1,3, and 5 = 9. 

 
D. Output: 

Who would like to see Ted talk? 

 

#3 A .  A few possible answers: 
 

System . out . println ( "The quick brown fox jumps over\nthe lazy dog!" ); 

 

System . out . println ( "The quick brown "   +  

                    "fox jumps over\n"   +  

              "the lazy dog!" ); 

 

B. One possible answer: 
 
System . out . println ( "\""   +  ai  +   "\", sometimes you gotta run before"   + 

"you can walk.\"-Tony Stark" ); 
  

 
 

Section 2.4 

#1 Syntax, Runtime, and logic. 
 
#2 A. Syntax error: Missing semicolon 
 

B. Logic error: average of 3 numbers should be divided by 3 
 
C. Syntax error: Cannot set a  double  (real) value to an  int  variable. 
 
D. Syntax error:  println  is misspelled. 
 
E. Logic error: area is equal to the product ( length   *   width ) 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 233 



F. Syntax error: You need to add the  String  with the (1+3).  i.e. add the ‘+’ 
operator 
System . out . println (" Sum  of  1   and   3   =   "  +  ( 1 + 3 )   ); 

 
 
CHAPTER 3 

Section 3.1 

#1 long 

 
#2 char 
 
#3 char  using two variables or as you will see:  String 
 
#4 float 
 
#5 byte 
 
#6 boolean  (For example:  boolean   workday   =   false;) 
 
#7 short 
 
#8 double 

Section 3.2 

#1 A. Both (Initialization statement) 
B. Assignment statement 
C. Declaration statement  
D. Assignment statement 
E. Both (Initialization statement) 
F. Declaration statement 

 
#2 first  is ‘ y ‘ 

second  is ‘ a ‘ 
last  is ‘ y ‘ 

 
#3 1number - can’t start with a number: invalid 

char - a reserved word for the character data type: invalid 
WholeNumber - variable starts with a capital letter: valid but against convention 
small change - space in variable name: invalid 
smile^_^ - ^ is not a valid character to use in an identifier: invalid 

 
 
 
JAVA: An Open Approach to No Objects Page 234 



Section 3.3 

#1 The name variable is declared with the primitive data type  char  which can only 
store a single symbol, not a  String  literal with multiple symbols like “Colonel 
Mustard”. Replacing  char  with  String  would make this a valid statement that 
declares and  instantiates  a  String  object identified as  name  with an entire string 
of characters:  C ,  o ,  l ,  o ,  n ,  e ,  l ,    ,  M ,  u ,  s ,  t ,  a ,  r , and  d ! 
 

#2 The single quotes around the  String  should only be used on  char  values written 
in your code (character literals). For instance, a single symbol ’ i ‘ assigned to a 
char  variable uses enclosing single quotes, and a  String  literal such as 
“Professor Plum”  uses enclosing double quotes. 

Section 3.4 

No questions here - you’re lucky! 

Section 3.5 

#1 Casting is a handy way to take some data and temporarily use it as a different 
type. This is handy for integer division when you want a decimal answer. 

 
#2 A. The output will be  5 

B. The value of weeks will be  30.41666666666666667 
C. The output will be  K  because the ASCII conversion of  75  is  K 

 

Section 3.6 

No questions here again - you’re super lucky! 

Section 3.7 

#1 There are  indexOf  methods that allow you to send just one argument, the 
character or  String  you are looking for but always from the start of the  String , 
and also  indexOf  methods that allow you to begin your search at an index 
further inside the  String . 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 235 



#2 At this stage in your learning, the two important ways that an object is different 
from a variable are that the class that defines the object has methods built to act 
on the data of the object, and that the value of an object is a reference to a 
memory location where the data is stored. A variable  only stores a single element 
of data of one type. 

 
#3 A  char  variable stores a single symbol and is a primitive data type. A  String 

object is defined by a class that that can manage many characters in sequence. 
 

#4 The first line of code forces 3   and  4  to be considered  String s, so the output will 
be  34 . But in the second line of code,  3  and  4  are added together first before 
outputting the number  7 . 
 

#5 row row your boat. 
When the index of “ row ” is found and stored in  pos , “ Row ” is skipped, not 
matching “ row ” because of the capital  R . 

 
#6 Happy Happy Birthday 

Though the substring method call selects and returns a  String  starting at index 
6, it isn’t stored in any new  String  or output, so it is wasted.  

 
#7 (E) I, II, and III 

The   equals  method checks for the characters in  s3  to be exactly the same as  s1 , 
which they are, so it is  true . Using the equals relational operator to compare the 
String s  also  comes out  true  for a very different reason. When  s2  is assigned 
s1  and  s3  is assigned  s2 , the three  String  objects all reference the exact same 
place in memory. 

 
CHAPTER 4 

Section 4.1 

#1 A. is equal to? 
B. not 
C. not equal to  
D. less than 
E. less than or equal to 
F. greater than 
G. greater than or equal to 
H. and 
I. or 

 

 

 

 
 
 
JAVA: An Open Approach to No Objects Page 236 



#2 A.  false 
B.  true 
C.  true 
D.  true 
E.  false 
F.  true 
G.  true 

 
#3 Short-circuit evaluation is when a computer can stop evaluating a conditional 

prematurely because there is a foregone conclusion. For instance, when 
examining an AND statement, if the first component is  false , there is no reason 
to examine the second component. This is great for optimization of code! 

Section 4.2 

#1 A. NO 
B. YES 
C. YES 
D. NO 
E. YES 

 
#2 A standalone  if  block may or may not execute. However, in an  if-else 

paradigm, one of the two blocks is guaranteed to be executed. 
 
#3 As an example: 
 

public   class   CoinFlipper   { 

   public   static   void  main  ( String []  args )   { 

     if   ( Math . random ()   <   . 5 )   { 

       System . out . println (" Heads "); 

     }   else  { 

       System . out . println (" Tails "); 

     } 

  } 

} 

 

Note that there is no need to make a second comparison - we know that since 
there are only two options, if the random number isn’t less than .5, it must be 
greater than or equal to .5 and will be reported as “Tails”. 

 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 237 



CHAPTER 5 
Section 5.1 

#1 The main difference is that the code in any one  if  statement may never execute; 
in an  if-else  situation,  exactly one  of the branches will fire. 

 
#2 A.  retire 

B.  over the hill 
C.  lotto  - Trick question! The  if  statement for  24  was not  >= 
D.  run for president 
E.  run for president 
F.  rent a car 
G. no output 
H. no output 

 
#3 A. The issue is here: 

 
if   ( num  >   15 );   { 

 
There should not be a semi-colon after the conditional. This code segment will 
still execute, but there will be erroneous results because “Bigger than 15” will 
always be output. 

 
B. The issue is here: 

 
if   ( choice  ==   "The Rock" )   { 

 
The code should read: 
 

if   ( choice.equals ( "The Rock" ))   { 
 
Your mileage will vary - some compilers may execute the code without 
incident, others will operate properly and compare the actual memory 
addresses, not values, and always return  false . 
 

C. There are two errors, and they reside on these lines: 
 

};   else   if   ( gpa  >   2.99 )   { 

 

};   else   { 
 
There cannot be a semi-colon after the curly braces - this will cause a 
syntax error when compiled. 

 
 
 
JAVA: An Open Approach to No Objects Page 238 



 

Section 5.2 

#1 Who lives in a pineapple under the sea? 
 
 
#2 This is a classic toggle - it will always reverse the state of the  boolean  variable 
 
#3 A.  !a || !b 

B.  !c && !d 
C.  e || !f 
D.  !g && h 
E.  i && j 

Section 5.3 

#1 Falling through is a situation where there are not  break  statements in every case 
in a  switch  statement. This means that multiple outcomes can occur. Sometimes 
this is desirable, though. A  break  statement in every case is like an  if-else  in 
that only one segment will be executed. A  switch  statement without  break s is 
like a number of standalone  if  statements - there could be more than one 
execution. 

Section 5.4 

#1 Scope is the visibility of a variable. It determines where it can be accessed. So a 
variable that is created before an  if  statement or a loop can be accessed in the 
if  statement or loop. But if it is created inside of an  if  statement or loop, it 
cannot be used outside the  if  statement or loop. 

 
#2 Compilation error! Although variables can live and die inside of curly braces, in 

this case we can’t create a variable that is already alive! 
 
#3 Nothing remarkable. The first loop will execute and print the numbers 1 through 

9, and then the second loop will execute and print the even numbers 2 through 
18. Since  i  is local to each loop, there will be no issues! 

 
 
 
 

 
 
 
JAVA: An Open Approach to No Objects Page 239 



CHAPTER 6 
Section 6.1 

#1 The main method is the first to be called when a program is run. 

#2 Method stubs 

#3 True: using verbs in method names causes their names to feel more natural 
when called. 

Section 6.2 

#1 When you copy code, you copy the errors along with it. If you want to update that 
code in the future, you will have to find it across many areas and possibly files. 
You may end up with some fixed parts and some that you missed.  

#2 If you take the code you were planning to copy and paste into several areas and 
write it into the declaration of a method, you would only have one central bit of 
code to maintain over time. 

#3 Because  secret  was declared inside the body of the  whisper  method, it has a 
scope limited to that method. The  main  method never even sees the  secret 
variable. In fact, it is only a temporarily used variable while whisper is executing. 
As soon as  whisper()  is done,  secret  is inaccessible. 

Section 6.3 

#1 A return type that is  not  void  because the call to  getStuff()  is being used to 
assign a value to  numberOfThings . The return type must match the data type of 
numberOfThings , so  int  is the best choice. Additionally, the header must have 
no parameters in the parameter list, and it must have  getStuff  as its identifier 
(name).  

#2 Because it is a method call, the 55 and  userNumber  variable listed in the 
parentheses are called arguments. 

#3 Because it is a method declaration,  count  and  num  are considered parameters in 
the method’s parameter list. Notice that data types are required in a parameter 
list and not when passing arguments. 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 240 



Section 6.4 

#1 eatVeggies ( 5 ); 

// any integer value would be fine inside the parentheses 

#2 System . out . println ( getPortions ( 12.2 )); 

// any double value in the parentheses will work 

#3 public   static   void  rotateAndDivide (   double  a ,   double  b ); 

// names of parameters can be anything, but data types have to be 

// double and double. 

#4 public   static   int  getLiquid ( int  a ,   double  b ); 

// names of parameters can be anything, but data types have to be 

// int and then double. 

 
CHAPTER 8 

Section 8.1 

 
#1 There are thousands of examples, but some of the more popular examples of 

arrays include: 
● Rosters for a sports team 
● Phonebooks 
● Inventories in video games 
● Cataloging systems in libraries 

 
 

#2 The diagram below is a sample - you’re values in each box may be different, but 
the structure (name, size) should be the same as in the diagram. 

Section 8.2 

#1  

String []  arrMatey  =   new   String [ 8 ]; 

Alternatively, it is permissible to have the code read: 
 

String  arrMatey[]  =   new   String [ 8 ]; 
 

 
 
#2 double []  radioStations  =   { 88.5 ,   91.3 ,   95.1 ,   103.5 ,   105.7 }; 

 
 
 
JAVA: An Open Approach to No Objects Page 241 



 
 

Section 8.3 

#1 The value of  element  is  1 . Don’t forget that arrays are “zero-indexed”, so the 
number in the fourth “box” of an array actually has an index of 3! 

 
#2 The answer is  14  because  arr[1]  is  4  and  arr[4]  is  10 . 
 
#3 This one seems tricky, but it’s not that bad. The code is: 
 

int []  arr  =   { 1 ,   3 ,   5 ,   9 ,   11 }; 

System . out . println ( arr [ arr [ 1 ]]); 

So let’s look at the call to  arr[1]  first. The value of  arr[1]  is  3 . So the last line 
of code is really asking us to output  arr[3] , which is  9 . 

 
#4 Let’s look at the code again: 
 

int []  arr  =   { 10 ,   20 ,   30 ,   40 ,   50 }; 

System . out . println ( arr [ 5 ]); 

If we were to diagram this, the array would look like this: 

 
 

This causes an error because in there  is no  arr[5] !  In the biz, we call this an 
ArrayIndexOutOfBoundsException. But don’t worry - we’ll talk about it soon. And 
you’ll most likely encounter this a bunch of times in your coding career! 

 
 

Section 8.4 

#1 5 
 
#2 4 

 
#3 5 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 242 



#4 The loop will iterate while  i  is less than or equal to the length of the array, and  i 
starts at  0 . This means the loop will iterate one more time than there are 
elements in the array, and an error will be thrown. 

 
 

 
 
 
JAVA: An Open Approach to No Objects Page 243 


